Do you want to publish a course? Click here

An exponential B-spline collocation method for fractional sub-diffusion equation

107   0   0.0 ( 0 )
 Added by Xiaogang Zhu
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

In this article, we propose an exponential B-spline collocation method to approximate the solution of the fractional sub-diffusion equation of Caputo type. The present method is generated by use of the Gorenflo-Mainardi-Moretti-Paradisi (GMMP) scheme in time and an efficient exponential B-spline based method in space. The unique solvability is rigorously discussed. Its stability is well illustrated via a procedure closely resembling the classic von Neumann approach. The resulting algebraic system is tri-diagonal that can rapidly be solved by the known algebraic solver with low cost and storage. A series of numerical examples are finally carried out and by contrast to the other algorithms available in the literature, numerical results confirm the validity and superiority of our method.



rate research

Read More

This article studies a direct numerical approach for fractional advection-diffusion equations (ADEs). Using a set of cubic trigonometric B-splines as test functions, a differential quadrature (DQ) method is firstly proposed for the 1D and 2D time-fractional ADEs of order $(0,1]$. The weighted coefficients are determined, and with them, the original equation is transformed into a group of general ordinary differential equations (ODEs), which are discretized by an effective difference scheme or Runge-Kutta method. The stability is investigated under a mild theoretical condition. Secondly, based on a set of cubic B-splines, we develop a new Crank-Nicolson type DQ method for the 2D space-fractional ADEs without advection. The DQ approximations to fractional derivatives are introduced and the values of the fractional derivatives of B-splines are computed by deriving explicit formulas. The presented DQ methods are evaluated on five benchmark problems and the concrete simulations of the unsteady propagation of solitons and Gaussian pulse. In comparison with the existing algorithms in the open literature, numerical results finally illustrate the validity and accuracy.
92 - Daxin Nie , Weihua Deng 2021
In this paper, we provide a framework of designing the local discontinuous Galerkin scheme for integral fractional Laplacian $(-Delta)^{s}$ with $sin(0,1)$ in two dimensions. We theoretically prove and numerically verify the numerical stability and convergence of the scheme with the convergence rate no worse than $mathcal{O}(h^{k+frac{1}{2}})$.
203 - Simone Brugiapaglia 2018
We propose a compressive spectral collocation method for the numerical approximation of Partial Differential Equations (PDEs). The approach is based on a spectral Sturm-Liouville approximation of the solution and on the collocation of the PDE in strong form at randomized points, by taking advantage of the compressive sensing principle. The proposed approach makes use of a number of collocation points substantially less than the number of basis functions when the solution to recover is sparse or compressible. Focusing on the case of the diffusion equation, we prove that, under suitable assumptions on the diffusion coefficient, the matrix associated with the compressive spectral collocation approach satisfies the restricted isometry property of compressive sensing with high probability. Moreover, we demonstrate the ability of the proposed method to reduce the computational cost associated with the corresponding full spectral collocation approach while preserving good accuracy through numerical illustrations.
We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bezier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation.
There are plenty of applications and analysis for time-independent elliptic partial differential equations in the literature hinting at the benefits of overtesting by using more collocation conditions than the number of basis functions. Overtesting not only reduces the problem size, but is also known to be necessary for stability and convergence of widely used unsymmetric Kansa-type strong-form collocation methods. We consider kernel-based meshfree methods, which is a method of lines with collocation and overtesting spatially, for solving parabolic partial differential equations on surfaces without parametrization. In this paper, we extend the time-independent convergence theories for overtesting techniques to the parabolic equations on smooth and closed surfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا