The stabilizing effects of enhanced edge resistivity on the low-n edge localized modes (ELMs) are reported for the first time in the context of ELM suppression in H-mode discharge due to Lithium-conditioning in the National Spherical Torus Experiment (NSTX). Here n is the toroidal mode number. Linear stability analysis of the corresponding experimental equilibrium suggests that the change in the equilibrium plasma density profile alone due to Lithium-conditioning may be insufficient for a complete suppression of ELMs. The enhanced resistivity due to the increased effective electric charge number Z eff after Lithium-conditioning can account for additional stabi- lization effect necessary for full ELM suppression. Remarkably, such a stabilizing effect of enhanced edge resistivity on the low-n ELMs only exists when two-fluid effects are considered in the MHD model.
Nonlinear edge localized modes in a tokamak are examined using global three-dimensional resistive magnetohydrodynamics simulations. Coherent current-carrying filament (ribbon-like) structures wrapped around the torus are nonlinearly formed due to nonaxisymmetric reconnecting current sheet instabilities, the so called peeling-like edge localized modes. These fast growing modes saturate by breaking axisymmetric current layers isolated near the plasma edge and go through repetitive relaxation cycles by expelling current radially outward and relaxing it back. The local bi-directional fluctuation-induced electromotive force (emf) from the edge localized modes, the dynamo action, relaxes the axisymmetric current density and forms current holes near the edge.
The stability of the $n=1$ resistive wall modes (RWMs) is investigated using the AEGIS code for the newly designed China Fusion Engineering Test Reactor (CFETR) 1GW steady-state operating (SSO) scenario. Here, $n$ is the toroidal mode number. Due to the large fraction of bootstrap current contribution, the profile of safety factor q is deeply reversed in magnetic shear in the central core region and locally flattened within the edge pedestal. Consequently the pressure-driven infernal components develop in the corresponding q-flattened regions of both core and edge. However, the edge infernal components dominate the $n=1$ RWM structure and lead to lower $beta_N$ limits than the designed target $beta_N$ for the CFETR 1GW SSO scenario. The edge rotation is found the most critical to the stabilization due to the dominant influence of the edge infernal components, which should be maintained above $1.5%Omega_{A0}$ in magnitude in order for the rotation alone to fully suppress the $n=1$ RWM in the CFETR 1GW SSO scenario.
Field-line localized ballooning modes have been observed at the edge of high confinement mode plasmas in ASDEX Upgrade with rotating 3D perturbations induced by an externally applied n = 2 error field and during a moderate level of edge localized mode-mitigation. The observed ballooning modes are localized to the field-lines which experience one of the two zero-crossings of the radial flux surface displacement during one rotation period. The localization of the ballooning modes agrees very well with the localization of the largest growth rates from infinite-n ideal ballooning stability calculations using a realistic 3D ideal magnetohydrodynamic equilibrium. This analysis predicts a lower stability with respect to the axisymmetric case. The primary mechanism for the local lower stability is the 3D distortion of the local magnetic shear.
Single carbon pellet disruption mitigation simulations using M3D-C1 were conducted in an NSTX-U-like plasma to support the electromagnetic pellet injection concept (EPI). A carbon ablation model has been implemented in M3D-C1 and tested with available data. 2D simulations were conducted in order to estimate the amount of carbon needed to quench the plasma, finding that the content in a $1,$mm radius vitreous carbon pellet (~ 3.2x10E20 atoms) would be enough if it is entirely ablated. 3D simulations were performed, scanning over pellet velocity and parallel thermal conductivity, as well as different injection directions and pellet concepts (solid pellets and shell pellets). The sensitivity of the thermal quench and other related quantities to these parameters has been evaluated. A 1 mm radius solid pellet only partially ablates at velocities of 300 m/s or higher, thus being unable to fully quench the plasma. To further enhance the ablation, approximations to an array of pellets and the shell pellet concept were also explored. 3D field line stochastization plays an important role in both quenching the center of the plasma and in heat flux losses, thus lowering the amount of carbon needed to mitigate the plasma when compared to the 2D case. This study constitutes an important step forward in `predict-first simulations for disruption mitigation in NSTX-U and other devices, such as ITER.
The turbulence-induced quasi-linear particle flux of a highly-charged, collisional impurity species is calculated from the electrostatic gyrokinetic equation including collisions with the bulk ions and the impurities themselves. The equation is solved by an expansion in powers of the impurity charge number $Z$. In this formalism, the collision operator only affects the impurity flux through the dynamics of the impurities in the direction parallel to the magnetic field. At reactor-relevant collisionality, the parallel dynamics is dominated by the parallel electric field, and collisions have a minor effect on the turbulent particle flux of highly-charged, collisional impurities.