Do you want to publish a course? Click here

Chemical enrichment of the pre-solar cloud by supernova dust grains

79   0   0.0 ( 0 )
 Added by Matthew Goodson
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The presence of short-lived radioisotopes (SLRs) in solar system meteorites has been interpreted as evidence that the solar system was exposed to a supernova shortly before or during its formation. Yet results from hydrodynamical models of SLR injection into the proto-solar cloud or disc suggest that gas-phase mixing may not be efficient enough to reproduce the observed abundances. As an alternative, we explore the injection of SLRs via dust grains as a way to overcome the mixing barrier. We numerically model the interaction of a supernova remnant containing SLR-rich dust grains with a nearby molecular cloud. The dust grains are subject to drag forces and both thermal and non-thermal sputtering. We confirm that the expanding gas shell stalls upon impact with the dense cloud and that gas-phase SLR injection occurs slowly due to hydrodynamical instabilities at the cloud surface. In contrast, dust grains of sufficient size (> 1 micron) decouple from the gas and penetrate into the cloud within 0.1 Myr. Once inside the cloud, the dust grains are destroyed by sputtering, releasing SLRs and rapidly enriching the dense (potentially star-forming) regions. Our results suggest that SLR transport on dust grains is a viable mechanism to explain SLR enrichment.



rate research

Read More

Chemical abundances are presented for 19 elements in a sample of 63 red giants in the Carina dwarf spheroidal galaxy (dSph), based on homogeneous 1D/LTE model atmosphere analyses of our own observations (32 stars) and data available in the literature (a further 31 independent stars). The (Fe) metallicity and [$alpha$/Fe] distribution functions have mean values and dispersions of -1.59 and 0.33 dex ([Fe/H] range: -2.68 to -0.64), and 0.07 and 0.13 dex ([$alpha$/Fe] range: -0.27 to 0.25), respectively. We confirm the finding of Venn et al. (2012) that a small percentage (some 10% in the present investigation) of the sample show clear evidence for significant enrichment by Type Ia supernovae ejecta. Calcium, with the most accurately determined abundance of the alpha-elements, shows an asymmetric distribution towards smaller values of [Ca/Fe] at all [Fe/H], most significantly over -2.0 < [Fe/H] < -1.0, suggestive of incomplete mixing of the ejecta of Type Ia SNe with the ambient medium of each of Carinas generations. Approximate color-magnitude-diagram age estimates are presented for the sample and, together with our chemical abundances, compared with the results of our previous synthetic CMD analysis, which reported the details of Carinas four well-defined populations. We searched for the Na-O anti-correlation universally reported in the Galaxys globular clusters, and confirm that this phenomenon does not exist in Carina. We also found that one of the 32 stars in our sample has an extremely enhanced lithium abundance -- A(Li)$_{text{NLTE}}$ = +3.36, consistent with membership of the ~1% group of Li-rich stars in dSph described by Kirby et al.
We present a three dimensional (3D) extinction analysis in the region toward the supernova remnant (SNR) S147 (G180.0-1.7) using multi-band photometric data from the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC), 2MASS and WISE. We isolate a previously unrecognised dust structure likely to be associated with SNR S147. The structure, which we term as S147 dust cloud, is estimated to have a distance $d$ = 1.22 $pm$ 0.21 kpc, consistent with the conjecture that S147 is associated with pulsar PSR J0538 + 2817. The cloud includes several dense clumps of relatively high extinction that locate on the radio shell of S147 and coincide spatially with the CO and gamma-ray emission features. We conclude that the usage of CO measurements to trace the SNR associated MCs is unavoidably limited by the detection threshold, dust depletion, and the difficulty of distance estimates in the outer Galaxy. 3D dust extinction mapping may provide a better way to identify and study SNR-MC interactions.
130 - S. Goswami , A. Slemer , P. Marigo 2021
There is mounting evidence that the stellar initial mass function (IMF) could extend much beyond the canonical Mi ~100, Msun limit, but the impact of such hypothesis on the chemical enrichment of galaxies still remains to be clarified. We aim to address this question by analysing the observed abundances of thin- and thick-disc stars in the Milky Way with chemical evolution models that account for the contribution of very massive stars dying as pair-instability supernovae. We built new sets of chemical yields from massive and very massive stars up to Mi ~ 350 Msun, by combining the wind ejecta extracted from our hydrostatic stellar evolution models with explosion ejecta from the literature. Using a simple chemical evolution code we analyse the effects of adopting different yield tables by comparing predictions against observations of stars in the solar vicinity. After several tests, we focus on the [O/Fe] ratio which best separates the chemical patterns of the two Milky Way components. We find that with a standard IMF, truncated at Mi ~ 100 Msun, we can reproduce various observational constraints for thin-disc stars, but the same IMF fails to account for the [O/Fe] ratios of thick-disc stars. The best results are obtained by extending the IMF up to Mi = 350 Msun and including the chemical ejecta of very massive stars, in the form of winds and pair-instability supernova explosions.Our study indicates that PISN played a significant role in shaping the chemical evolution of the Milky Way thick disc. By including their chemical yields it is easier to reproduce not only the level of the alpha-enhancement but also the observed slope of thick-disc stars in the [O/Fe] vs [Fe/H] diagram. The bottom line is that the contribution of very massive stars to the chemical enrichment of galaxies is potentially quite important and should not be neglected in chemical evolution models.
Observations have demonstrated that supernovae efficiently produce dust. This is consistent with the hypothesis that supernovae and asymptotic giant branch stars are the primary producers of dust in the Universe. However, there has been a longstanding question of how much of the dust detected in the interiors of young supernova remnants can escape into the interstellar medium. We present new hydrodynamical calculations of the evolution of dust grains that were formed in dense ejecta clumps within a Cas A-like remnant. We follow the dynamics of the grains as they decouple from the gas after their clump is hit by the reverse shock. They are subsequently subject to destruction by thermal and kinetic sputtering as they traverse the remnant. Grains that are large enough ($sim 0.25,mu$m for silicates and $sim 0.1,mu$m for carbonaceous grains) escape into the interstellar medium while smaller grains get trapped and destroyed. However, grains that reach the interstellar medium still have high velocities, and are subject to further destruction as they are slowed down. We find that for initial grain size distributions that include large ($sim 0.25 - 0.5,mu$m) grains, 10--20% of silicate grains can survive, while 30--50% of carbonaceous grains survive even when the initial size distribution cuts off at smaller ($0.25,mu$m) sizes. For a 19 M$_{odot}$ star similar to the progenitor of Cas A, up to 0.1 M$_{odot}$ of dust can survive if the dust grains formed are large. Thus we show that supernovae under the right conditions can be significant sources of interstellar dust.
We investigate the enrichment of the pre-solar cloud core with short lived radionuclides (SLRs), especially 26Al. The homogeneity and the surprisingly small spread in the ratio 26Al/27Al observed in the overwhelming majority of calcium-aluminium-rich inclusions (CAIs) in a vast variety of primitive chondritic meteorites places strong constraints on the formation of the the solar system. Freshly synthesized radioactive 26Al has to be included and well mixed within 20kyr. After discussing various scenarios including X-winds, AGB stars and Wolf-Rayet stars, we come to the conclusion that triggering the collapse of a cold cloud core by a nearby supernova is the most promising scenario. We then narrow down the vast parameter space by considering the pre-explosion survivability of such a clump as well as the cross-section necessary for sufficient enrichment. We employ numerical simulations to address the mixing of the radioactively enriched SN gas with the pre-existing gas and the forced collapse within 20kyr. We show that a cold clump of 10Msun at a distance of 5pc can be sufficiently enriched in 26Al and triggered into collapse fast enough - within 18kyr after encountering the supernova shock - for a range of different metallicities and progenitor masses, even if the enriched material is assumed to be distributed homogeneously in the entire supernova bubble. In summary, we envision an environment for the birth place of the Solar System 4.567Gyr ago similar to the situation of the pillars in M16 nowadays, where molecular cloud cores adjacent to an HII region will be hit by a supernova explosion in the future. We show that the triggered collapse and formation of the Solar System as well as the required enrichment with radioactive 26Al are possible in this scenario.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا