No Arabic abstract
In this paper we present our work on Task 1 Acoustic Scene Classi- fication and Task 3 Sound Event Detection in Real Life Recordings. Among our experiments we have low-level and high-level features, classifier optimization and other heuristics specific to each task. Our performance for both tasks improved the baseline from DCASE: for Task 1 we achieved an overall accuracy of 78.9% compared to the baseline of 72.6% and for Task 3 we achieved a Segment-Based Error Rate of 0.76 compared to the baseline of 0.91.
This paper describes an acoustic scene classification method which achieved the 4th ranking result in the IEEE AASP challenge of Detection and Classification of Acoustic Scenes and Events 2016. In order to accomplish the ensuing task, several methods are explored in three aspects: feature extraction, feature transformation, and score fusion for final decision. In the part of feature extraction, several features are investigated for effective acoustic scene classification. For resolving the issue that the same sound can be heard in different places, a feature transformation is applied for better separation for classification. From these, several systems based on different feature sets are devised for classification. The final result is determined by fusing the individual systems. The method is demonstrated and validated by the experiment conducted using the Challenge database.
Acoustic scene recordings are represented by different types of handcrafted or Neural Network-derived features. These features, typically of thousands of dimensions, are classified in state of the art approaches using kernel machines, such as the Support Vector Machines (SVM). However, the complexity of training these methods increases with the dimensionality of these input features and the size of the dataset. A solution is to map the input features to a randomized lower-dimensional feature space. The resulting random features can approximate non-linear kernels with faster linear kernel computation. In this work, we computed a set of 6,553 input features and used them to compute random features to approximate three types of kernels, Gaussian, Laplacian and Cauchy. We compared their performance using an SVM in the context of the DCASE Task 1 - Acoustic Scene Classification. Experiments show that both, input and random features outperformed the DCASE baseline by an absolute 4%. Moreover, the random features reduced the dimensionality of the input by more than three times with minimal loss of performance and by more than six times and still outperformed the baseline. Hence, random features could be employed by state of the art approaches to compute low-storage features and perform faster kernel computations.
This thesis focuses on dealing with the task of acoustic scene classification (ASC), and then applied the techniques developed for ASC to a real-life application of detecting respiratory disease. To deal with ASC challenges, this thesis addresses three main factors that directly affect the performance of an ASC system. Firstly, this thesis explores input features by making use of multiple spectrograms (log-mel, Gamma, and CQT) for low-level feature extraction to tackle the issue of insufficiently discriminative or descriptive input features. Next, a novel Encoder network architecture is introduced. The Encoder firstly transforms each low-level spectrogram into high-level intermediate features, or embeddings, and thus combines these high-level features to form a very distinct composite feature. The composite or combined feature is then explored in terms of classification performance, with different Decoders such as Random Forest (RF), Multilayer Perception (MLP), and Mixture of Experts (MoE). By using this Encoder-Decoder framework, it helps to reduce the computation cost of the reference process in ASC systems which make use of multiple spectrogram inputs. Since the proposed techniques applied for general ASC tasks were shown to be highly effective, this inspired an application to a specific real-life application. This was namely the 2017 Internal Conference on Biomedical Health Informatics (ICBHI) respiratory sound dataset. Building upon the proposed ASC framework, the ICBHI tasks were tackled with a deep learning framework, and the resulting system shown to be capable at detecting respiratory anomaly cycles and diseases.
This paper presents the details of the Audio-Visual Scene Classification task in the DCASE 2021 Challenge (Task 1 Subtask B). The task is concerned with classification using audio and video modalities, using a dataset of synchronized recordings. This task has attracted 43 submissions from 13 different teams around the world. Among all submissions, more than half of the submitted systems have better performance than the baseline. The common techniques among the top systems are the usage of large pretrained models such as ResNet or EfficientNet which are trained for the task-specific problem. Fine-tuning, transfer learning, and data augmentation techniques are also employed to boost the performance. More importantly, multi-modal methods using both audio and video are employed by all the top 5 teams. The best system among all achieved a logloss of 0.195 and accuracy of 93.8%, compared to the baseline system with logloss of 0.662 and accuracy of 77.1%.
The ranking of sound event detection (SED) systems may be biased by assumptions inherent to evaluation criteria and to the choice of an operating point. This paper compares conventional event-based and segment-based criteria against the Polyphonic Sound Detection Score (PSDS)s intersection-based criterion, over a selection of systems from DCASE 2020 Challenge Task 4. It shows that, by relying on collars , the conventional event-based criterion introduces different strictness levels depending on the length of the sound events, and that the segment-based criterion may lack precision and be application dependent. Alternatively, PSDSs intersection-based criterion overcomes the dependency of the evaluation on sound event duration and provides robustness to labelling subjectivity, by allowing valid detections of interrupted events. Furthermore, PSDS enhances the comparison of SED systems by measuring sound event modelling performance independently from the systems operating points.