Do you want to publish a course? Click here

X-Ray and Radio Emission from the Luminous Supernova 2005kd

150   0   0.0 ( 0 )
 Added by Vikram Dwarkadas
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

SN 2005kd is among the most luminous supernovae (SNe) to be discovered at X-ray wavelengths. We have re-analysed all good angular resolution (better than $20$ FWHM PSF) archival X-ray data for SN 2005kd. The data reveal an X-ray light curve that decreases as t$^{-1.62 pm 0.06}$. Our modelling of the data suggests that the early evolution is dominated by emission from the forward shock in a high-density medium. Emission from the radiative reverse shock is absorbed by the cold dense shell formed behind the reverse shock. Our results suggest a progenitor with a mass-loss rate towards the end of its evolution of $ge$ 4.3 $times$ 10$^{-4} M_{odot} ,{rm yr}^{-1}$, for a wind velocity of 10 km s$^{-1}$, at 4.0 $times$ 10$^{16}$ cm. This mass-loss rate is too high for most known stars, except perhaps hypergiant stars. A higher wind velocity would lead to a correspondingly higher mass-loss rate. A Luminous Blue Variable star undergoing a giant eruption could potentially fulfill this requirement, but would need a high mass-loss rate lasting for several hundred years, and need to explain the plateau observed in the optical light curve. The latter could perhaps be due to the ejecta expanding in the dense circumstellar material at relatively small radii. These observations are consistent with the fact that Type IIn SNe appear to expand into high density and high mass-loss rate environments, and also suggest rapid variability in the wind mass-loss parameters within at least the last 5000 years of stellar evolution prior to core-collapse.



rate research

Read More

It has been widely argued that Type-I super-luminous supernovae (SLSNe-I) are driven by powerful central engines with a long-lasting energy injection after the core-collapse of massive progenitors. One of the popular hypotheses is that the hidden engines are fast-rotating pulsars with a magnetic field of $Bsim{10}^{13}-{10}^{15}$ G. Murase, Kashiyama & Meszaros (2016) showed that quasi-steady radio/submm emission from non-thermal electron-positron pairs in nascent pulsar wind nebulae can be used as a counterpart of such pulsar-driven supernovae (SNe). In this work, focusing on the nascent SLSN-I remnants, we examine constraints that can be placed by radio emission. We show that the Atacama Large Millimeter/submillimetre Array (ALMA) can detect the radio nebula from SNe at $D_{rm L} sim 1 rm Gpc$ in a few years after the explosion, while the Jansky Very Large Array (VLA) can also detect the counterpart in a few decades. The proposed radio followup observation could solve the parameter degeneracy in the pulsar-driven SN model for optical/UV light curves, and could also give us clues to young neutron star scenarios for SLSNe-I and fast radio bursts.
462 - Navin Sridhar 2021
The discovery of periodicity in the arrival times of the fast radio bursts (FRBs) poses a challenge to the oft-studied magnetar scenarios. However, models that postulate that FRBs result from magnetized shocks or magnetic reconnection in a relativistic outflow are not specific to magnetar engines; instead, they require only the impulsive injection of relativistic energy into a dense magnetized medium. Motivated thus, we outline a new scenario in which FRBs are powered by short-lived relativistic outflows (``flares) from accreting black holes or neutron stars, which propagate into the cavity of the pre-existing (``quiescent) jet. In order to reproduce FRB luminosities and rates, we are driven to consider binaries of stellar-mass compact objects undergoing super-Eddington mass-transfer, similar to ultraluminous X-ray (ULX) sources. Indeed, the host galaxies of FRBs, and their spatial offsets within their hosts, show broad similarities with ULXs. Periodicity on timescales of days to years could be attributed to precession (e.g., Lens-Thirring) of the polar accretion funnel, along which the FRB emission is geometrically and relativistically beamed, which sweeps across the observer line of sight. Accounting for the most luminous FRBs via accretion power may require a population of binaries undergoing brief-lived phases of unstable (dynamical-timescale) mass-transfer. This will lead to secular evolution in the properties of some repeating FRBs on timescales of months to years, followed by a transient optical/IR counterpart akin to a luminous red nova, or a more luminous accretion-powered optical/X-ray transient. We encourage targeted FRB searches of known ULX sources.
We present the results of a spectral analysis of the central region of the mixed-morphology supernova remnant HB 9. A prior Ginga observation of this source detected a hard X-ray component above 4 keV and the origin of this particular X-ray component is still unknown. Our results demonstrate that the extracted X-ray spectra are best represented by a model consisting of a collisional ionization equilibrium plasma with a temperature of ~0.1-0.2 keV (interstellar matter component) and an ionizing plasma with a temperature of ~0.6-0.7 keV and an ionization timescale of >1 x 10^{11} cm^{-3} s (ejecta component). No significant X-ray emission was found in the central region above 4 keV. The recombining plasma model reported by a previous work does not explain our spectra.
We report a discovery of diffuse X-ray emission around the supernova remnant (SNR) G106.3+2.7, which is associated with VER J2227+608 and HAWC J2227+610 and is known as a candidate for a PeV cosmic ray accelerator (PeVatron). We analyze observational data of Suzaku around the SNR and the adjacent pulsar PSR J2229+6114. We find diffuse X-ray emission that is represented by either thermal or non-thermal one. However, the metal abundance for the thermal emission is <0.13 Z_sun, which may be too small in the Milky Way and suggests that the emission is non-thermal. The intensity of the diffuse emission increases toward PSR J2229+6114 in the same way as radio emission, and it is in contrast with gamma-ray emission concentrated on a molecular cloud. The X-ray photon index does not change with the distance from the pulsar and it indicates that radiative cooling is ineffective and particle diffusion is not extremely slow. The X-ray and radio emissions seem to be of leptonic origin and the parent electrons may originate from the pulsar or its wind nebula. The gamma-ray emission appears to be of hadronic origin because of its spacial distribution. The parent protons may be tightly confined in the cloud separately from the diffusing electrons.
The X-ray source RX J0648.0-4418 is the only confirmed binary system in which a compact object, most likely a massive white dwarf, accretes from a hot subdwarf companion, the bright sdO star HD 49798. The X-ray emission from this system is characterized by two periodic modulations caused by an eclipse, at the orbital period of 1.55 d, and by the rotation of the compact object with a spin period of 13.2 s. In 2011 we obtained six short XMM-Newton observations centered at orbital phase 0.75, in order to study the system during the eclipse, and spaced at increasingly long time intervals in order to obtain an accurate measure of the spin-period evolution through phase-connected timing. The duration of the eclipse ingress and egress, 500 s, indicates the presence of an X-ray emitting region with dimensions of the order of a few 10^4 km, surrounding the pulsar and probably due to scattering in the companions wind. We derived an upper limit on the spin-period derivative |Pdot|<6x10^-15 s/s, more than two orders of magnitude smaller than the previously available value. Significant X-ray emission is detected also during the 1.2 hours-long eclipse, with a luminosity of about 3x10^30 erg/s. The eclipse spectrum shows prominent emission lines of H- and He-like nitrogen, an overabundant element in HD 49798. These findings support the suggestion that the X-ray emission observed during the eclipse originates in HD 49798 and that the processes responsible for X-ray emission in the stellar winds of massive O stars are also at work in the much weaker winds of hot subdwarfs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا