No Arabic abstract
We discuss dynamical systems approaches and methods applied to flat Robertson-Walker models in $f(R)$-gravity. We argue that a complete description of the solution space of a model requires a global state space analysis that motivates globally covering state space adapted variables. This is shown explicitly by an illustrative example, $f(R) = R + alpha R^2$, $alpha > 0$, for which we introduce new regular dynamical systems on global compactly extended state spaces for the Jordan and Einstein frames. This example also allows us to illustrate several local and global dynamical systems techniques involving, e.g., blow ups of nilpotent fixed points, center manifold analysis, averaging, and use of monotone functions. As a result of applying dynamical systems methods to globally state space adapted dynamical systems formulations, we obtain pictures of the entire solution spaces in both the Jordan and the Einstein frames. This shows, e.g., that due to the domain of the conformal transformation between the Jordan and Einstein frames, not all the solutions in the Jordan frame are completely contained in the Einstein frame. We also make comparisons with previous dynamical systems approaches to $f(R)$ cosmology and discuss their advantages and disadvantages.
We investigate cosmological dynamics based on $f(R)$ gravity in the Palatini formulation. In this study we use the dynamical system methods. We show that the evolution of the Friedmann equation reduces to the form of the piece-wise smooth dynamical system. This system is is reduced to a 2D dynamical system of the Newtonian type. We demonstrate how the trajectories can be sewn to guarantee $C^0$ extendibility of the metric similarly as `Milne-like FLRW spacetimes are $C^0$-extendible. We point out that importance of dynamical system of Newtonian type with non-smooth right-hand sides in the context of Palatini cosmology. In this framework we can investigate singularities which appear in the past and future of the cosmic evolution. We consider cosmological systems in both Einstein and Jordan frames. We show that at each frame the topological structures of phase space are different.
The $f(T,T_G)$ class of gravitational modification, based on the quadratic torsion scalar $T$, as well as on the new quartic torsion scalar $T_G$ which is the teleparallel equivalent of the Gauss-Bonnet term, is a novel theory, different from both $f(T)$ and $f(R,G)$ ones. We perform a detailed dynamical analysis of a spatially flat universe governed by the simplest non-trivial model of $f(T,T_G)$ gravity which does not introduce a new mass scale. We find that the universe can result in dark-energy dominated, quintessence-like, cosmological-constant-like or phantom-like solutions, according to the parameter choices. Additionally, it may result to a dark energy - dark matter scaling solution, and thus it can alleviate the coincidence problem. Finally, the analysis at infinity reveals that the universe may exhibit future, past, or intermediate singularities depending on the parameters.
Using dynamical system analysis, we explore the cosmology of theories of order up to eight order of the form $f(R, Box R)$. The phase space of these cosmology reveals that higher-order terms can have a dramatic influence on the evolution of the cosmology, avoiding the onset of finite time singularities. We also confirm and extend some of results which were obtained in the past for this class of theories.
In this work by using a numerical analysis, we investigate in a quantitative way the late-time dynamics of scalar coupled $f(R,mathcal{G})$ gravity. Particularly, we consider a Gauss-Bonnet term coupled to the scalar field coupling function $xi(phi)$, and we study three types of models, one with $f(R)$ terms that are known to provide a viable late-time phenomenology, and two Einstein-Gauss-Bonnet types of models. Our aim is to write the Friedmann equation in terms of appropriate statefinder quantities frequently used in the literature, and we numerically solve it by using physically motivated initial conditions. In the case that $f(R)$ gravity terms are present, the contribution of the Gauss-Bonnet related terms is minor, as we actually expected. This result is robust against changes in the initial conditions of the scalar field, and the reason is the dominating parts of the $f(R)$ gravity sector at late times. In the Einstein-Gauss-Bonnet type of models, we examine two distinct scenarios, firstly by choosing freely the scalar potential and the scalar Gauss-Bonnet coupling $xi(phi)$, in which case the resulting phenomenology is compatible with the latest Planck data and mimics the $Lambda$-Cold-Dark-Matter model. In the second case, since there is no fundamental particle physics reason for the graviton to change its mass, we assume that primordially the tensor perturbations propagate with the speed equal to that of lights, and thus this constraint restricts the functional form of the scalar coupling function $xi(phi)$, which must satisfy the differential equation $ddot{xi}=Hdot{xi}$.
We discuss some aspects of the Horava-Lifshitz cosmology with different matter components considered as dominants at different stages of the cosmic evolution (each stage is represented by an equation of state pressure/density=constant). We compare cosmological solutions from this theory with their counterparts of General Relativity (Friedmann cosmology). At early times, the Horava- Lifshitz cosmology contains a curvature-dependent dominant term which is stiff matter-reminiscent and this fact motivates to discuss, in some detail, this term beside the usual stiff matter component (pressure=density) if we are thinking in the role that this fluid could have played early in the framework of the holographic cosmology. Nevertheless, we show that an early stiff matter component is of little relevance in Horava-Lifshitz cosmology.