Do you want to publish a course? Click here

The sinusoidal periodicity nature for M>=5 global earthquakes

237   0   0.0 ( 0 )
 Added by Zhenxia Zhang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

By using the M>=5 global earthquake data for Jan. 1950 to Dec. 2015, we performed statistical analyses for the parameters magnitude, time, and depth on a yearly scale. The magnitude spectrum, which is the earthquake number accumulated at different magnitudes, had an exponential distribution. For the first time, we report a very significant characteristic of the sinusoidal periodic variation in the spectral index. The cycle of the sine function fitting was 30.98 years. The concept of annual equivalent total magnitude (AETM) of total released energy for each year was introduced and the trend variation of AETM year by year was studied. Overall, the global AETM of earthquakes with M>=5 displayed a certain upward trend as the years elapsed. At the same time, the change of the average epicenter depth of the global earthquakes (M>=5) in each year was analyzed.



rate research

Read More

197 - T.Chen , L.Li , X.-X.Zhang 2021
A promising perspective is presented that humans can provide hourly warning for strong land earthquakes (EQs, Ms6). Two important atmospheric electrostatic signal features are described. A table that lists 9 strong land EQs with shock time, epicenter, magnitude, weather in the region near the epicenter, precursor beginning time, and precursor duration demonstrates that at approximately several hours to one day before a strong land EQ, the weather conditions are fair near the epicenter, and an abnormal negative atmospheric electrostatic signal is very obvious. Moreover, the mechanism is explained. A method by which someone could determine the epicenter and the magnitude of a forthcoming strong EQ is suggested. Finally, the possibility of realizing hourly warning for strong land EQs in the near future is pointed out.
We analyse the compiled set of precursory data that were reported to be available in real time before the Ms 7.5 Haicheng earthquake in Feb. 1975 and the Ms 7.6-7.8 Tangshan earthquake in July 1976. We propose a robust and simple coarse-graining method consisting in aggregating and counting how all the anomalies together (geodesy, levelling, geomagnetism, soil resistivity, Earth currents, gravity, Earth stress, well water radon, well water level) develop as a function of time. We demonstrate a strong evidence for the existence of an acceleration of the number of anomalies leading up to the major Haicheng and Tangshan earthquakes. In particular for the Tangshan earthquake, the frequency of occurrence of anomalies is found to be well described by the log-periodic power law singularity (LPPLS) model, previously proposed for the prediction of engineering failures and later adapted to the prediction of financial crashes. Based on a mock real-time prediction experiment, and simulation study, we show the potential for an early warning system with lead-time of a few days, based on this methodology of monitoring accelerated rates of anomalies.
Low-frequency earthquakes are a particular class of slow earthquakes that provide a unique source of information on the mechanical properties of a subduction zone during the preparation of large earthquakes. Despite increasing detection of these events in recent years, their source mechanisms are still poorly characterised, and the relation between their magnitude and size remains controversial. Here, we present the source characterisation of more than 10,000 low-frequency earthquakes that occurred during tremor sequences in 2012-2016 along the Nankai subduction zone in western Shikoku, Japan. We show that the seismic moment versus corner frequency scaling for these events is compatible with an inverse of the cube law, as widely observed for regular earthquakes. Our result is thus consistent with shear rupture as the source mechanism for low-frequency earthquakes, and suggests that they obey to a similar physics of regular earthquakes, with self-similar rupture process and constant stress drop. Furthermore, when investigating the dependence of the stress drop value on the rupture speed, we found that low-frequency earthquakes might propagate at lower rupture velocity than regular earthquakes, releasing smaller stress drop.
The driving concept behind one of the most successful statistical forecasting models, the ETAS model, has been that the seismicity is driven by spontaneously occurring background earthquakes that cascade into multitudes of triggered earthquakes. In nearly all generalizations of the ETAS model, the magnitudes of the background and the triggered earthquakes are assumed to follow Gutenberg-Richter law with the same exponent (b{eta}-value). Furthermore, the magnitudes of the triggered earthquakes are always assumed to be independent of the magnitude of the triggering earthquake. Using an EM algorithm applied to the Californian earthquake catalogue, we show that the distribution of earthquake magnitudes exhibits three distinct b{eta}-values: b{eta}_b for background events; b{eta}_a-{delta} and b{eta}_a+{delta}, respectively, for triggered events below and above the magnitude of the triggering earthquake; the two last values express a correlation between the magnitudes of triggered events with that of the triggering earthquake, a feature so far absent in all proposed operational generalizations of the ETAS model. The ETAS model incorporating this kinked magnitude distribution provides by far the best description of seismic catalogs and could thus have the best forecasting potential. We speculate that the kinked magnitude distribution may result from the system tending to restore the symmetry of the regional displacement gradient tensor that has been broken by the initiating event. The general emerging concept could be that while the background events occur primarily to accommodate the symmetric stress tensor at the boundaries of the system, the triggered earthquakes are quasi-Goldstone fluctuations of a self-organized critical deformation state.
We report on an extensive characterization of the cracking noise produced by charcoal samples when dampened with ethanol. We argue that the evaporation of ethanol causes transient and irregularly distributed internal stresses that promote the fragmentation of the samples and mimic some situations found in mining processes. The results show that, in general, the most fundamental seismic laws ruling earthquakes (Gutenberg-Richter law, unified scaling law for the recurrence times, Omoris law, productivity law and Baths law) hold under the conditions of the experiment. Some discrepancies were also identified (a smaller exponent in Gutenberg-Richter law, a stationary behavior in the aftershock rates for long times and a double power-law relationship in productivity law) and related to the different loading condition. Our results thus corroborate to elucidate the parallel between seismic laws and fracture experiments caused by a more complex loading condition that also occurs in natural and induced seismicity (such as long-term fluid injection and gas-rock outbursts in mining processes).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا