Do you want to publish a course? Click here

Crystal field states of Kondo lattice heavy fermions CeRuSn3 and CeRhSn3

50   0   0.0 ( 0 )
 Added by Vivek Kumar Anand
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inelastic neutron scattering experiments have been carried out to determine the crystal field states of the Kondo lattice heavy fermions CeRuSn3 and CeRhSn3. Both the compounds crystallize in LaRuSn3-type cubic structure (space group Pm-3n) in which the Ce atoms occupy two distinct crystallographic sites with cubic (m-3) and tetragonal (-4m.2) point symmetries. The INS data of CeRuSn3 reveal the presence of a broad excitation centered around 6-8 meV which is accounted by a model based on crystal electric field (CEF) excitations. On the other hand, the INS data of isostructural CeRhSn3 reveal three CEF excitations around 7.0, 12.2 and 37.2 meV. The neutron intensity sum rule indicates that the Ce ions at both cubic and tetragonal Ce sites are in Ce3+ state in both CeRuSn3 and CeRhSn3. The CEF level schemes for both the compounds are deduced. We estimate the Kondo temperature T_K = 3.1(2) K for CeRuSn3 from neutron quasielastic linewidth in excellent agreement with that determined from the scaling of magnetoresistance which gives T_K = 3.2(1) K. For CeRhSn3 the neutron quasielastic linewidth gives T_K = 4.6 K. For both CeRuSn3 and CeRhSn3, the ground state of Ce3+ turns out to be a quartet for the cubic site and a doublet for the tetragonal site.



rate research

Read More

Resolving the heavy fermion band in the conduction electron momentum resolved spectral function of the Kondo lattice model is challenging since, in the weak coupling limit, its spectral weight is exponentially small. In this article we consider a composite fermion operator, consisting of a conduction electron dressed by spin fluctuations that shares the same quantum numbers as the electron operator. Using approximation free auxiliary field quantum Monte Carlo simulations we show that for the SU(2) spin-symmetric model on the square lattice at half filling, the composite fermion acts as a magnifying glass for the heavy fermion band. In comparison to the conduction electron residue that scales as $e^{-W/J_k}$ with $W$ the bandwidth and $J_k$ the Kondo coupling, the residue of the composite fermion tracks $J_k$. This result holds down to $J_k/W = 0.05$, and confirms the point of view that magnetic ordering, present below $J_k/W = 0.18$, does not destroy the heavy quasiparticle. We furthermore investigate the spectral function of the composite fermion in the ground state and at finite temperatures, for SU($N$) generalizations of the Kondo lattice model, as well as for ferromagnetic Kondo couplings, and compare our results to analytical calculations in the limit of high temperatures, large-$N$, large-$S$, and large $J_k$. Based on these calculations, we conjecture that the composite fermion operator provides a unique tool to study the destruction of the heavy fermion quasiparticle in Kondo breakdown transitions. The relation of our results to scanning tunneling spectroscopy and photoemission experiments is discussed.
In solids containing elements with f orbitals, the interaction between f-electron spins and those of itinerant electrons leads to the development of low-energy fermionic excitations with a heavy effective mass. These excitations are fundamental to the appearance of unconventional superconductivity and non-Fermi-liquid behaviour observed in actinide- and lanthanide-based compounds. Here we use spectroscopic mapping with the scanning tunnelling microscope to detect the emergence of heavy excitations with lowering of temperature in a prototypical family of cerium-based heavy-fermion compounds. We demonstrate the sensitivity of the tunnelling process to the composite nature of these heavy quasiparticles, which arises from quantum entanglement of itinerant conduction and f electrons. Scattering and interference of the composite quasiparticles is used to resolve their energy-momentum structure and to extract their mass enhancement, which develops with decreasing temperature. The lifetime of the emergent heavy quasiparticles reveals signatures of enhanced scattering and their spectral lineshape shows evidence of energy-temperature scaling. These findings demonstrate that proximity to a quantum critical point results in critical damping of the emergent heavy excitation of our Kondo lattice system.
Kondo insulators are primary candidates in the search for strongly correlated topological quantum phases, which may host topological order, fractionalization, and non-Abelian statistics. Within some Kondo insulators, the hybridization gap is predicted to protect a nontrivial topological invariant and to harbor emergent heavy Dirac fermion surface modes. We use high-energy-resolution spectroscopic imaging in real and momentum space on the Kondo insulator, SmB$_6$. On cooling through $T^*_{Delta}approx$ 35 K we observe the opening of an insulating gap that expands to $Deltaapprox$ 10 meV at 2 K. Within the gap, we image the formation of linearly dispersing surface states with effective masses reaching $m^* = (410pm20)m_e$. We thus demonstrate existence of a strongly correlated topological Kondo insulator phase hosting the heaviest known Dirac fermions.
One of the challenges in strongly correlated electron systems, is to understand the anomalous electronic behavior that develops at an antiferromagnetic quantum critical point (QCP), a phenomenon that has been extensively studied in heavy fermion materials. Current theories have focused on the critical spin fluctuations and associated break-down of the Kondo effect. Here we argue that the abrupt change in Fermi surface volume that accompanies heavy fermion criticality leads to critical charge fluctuations. Using a model one dimensional Kondo lattice in which each moment is connected to a separate conduction bath, we show a Kondo breakdown transition develops between a heavy Fermi liquid and a gapped spin liquid via a QCP with omega/T scaling, which features a critical charge mode directly associated with the break-up of Kondo singlets. We discuss the possible implications of this emergent charge mode for experiment.
80 - H. Kaps , N. Buttgen , W. Trinkl 2000
7Li NMR measurements were performed in the metallic spinel LiV2O4. The temperature dependencies of the line width, the Knight shift and the spin-lattice relaxation rate were investigated in the temperature range 30 mK < T < 280 K. For temperatures T < 1 K we observe a spin-lattice relaxation rate which slows down exponentially. The NMR results can be explained by a spin-liquid behavior and the opening of a spin gap of the order 0.6 K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا