Do you want to publish a course? Click here

Existence and uniqueness results for BSDEs with jumps: the whole nine yards

74   0   0.0 ( 0 )
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

This paper is devoted to obtaining a wellposedness result for multidimensional BSDEs with possibly unbounded random time horizon and driven by a general martingale in a filtration only assumed to satisfy the usual hypotheses, i.e. the filtration may be stochastically discontinuous. We show that for stochastic Lipschitz generators and unbounded, possibly infinite, time horizon, these equations admit a unique solution in appropriately weighted spaces. Our result allows in particular to obtain a wellposedness result for BSDEs driven by discrete--time approximations of general martingales.



rate research

Read More

Motivated by an equilibrium problem, we establish the existence of a solution for a family of Markovian backward stochastic differential equations with quadratic nonlinearity and discontinuity in $Z$. Using unique continuation and backward uniqueness, we show that the set of discontinuity has measure zero. In a continuous-time stochastic model of an endowment economy, we prove the existence of an incomplete Radner equilibrium with nondegenerate endogenous volatility.
This paper is devoted to the existence, uniqueness and comparison theorem on unbounded solutions of a scalar backward stochastic differential equation (BSDE) whose generator grows (with respect to both unknown variables $y$ and $z$) in a super-linear way like $|y||ln |y||^{(lambda+1/2)wedge 1}+|z||ln |z||^{lambda}$ for some $lambdageq 0$. For the following four different ranges of the growth power parameter $lambda$: $lambda=0$, $lambdain (0,1/2)$, $lambda=1/2$ and $lambda>1/2$, we give reasonably weakest possible different integrability conditions of the terminal value for the existence of an unbounded solution to the BSDE. In the first two cases, they are stronger than the $Lln L$-integrability and weaker than any $L^p$-integrability with $p>1$; in the third case, the integrability condition is just some $L^p$-integrability for $p>1$; and in the last case, the integrability condition is stronger than any $L^p$-integrability with $p>1$ and weaker than any $exp(L^epsilon)$-integrability with $epsilonin (0,1)$. We also establish the comparison theorem, which yields naturally the uniqueness, when either generator of both BSDEs is convex (concave) in both unknown variables $(y,z)$, or satisfies a one-sided Osgood condition in the first unknown variable $y$ and a uniform continuity condition in the second unknown variable $z$.
118 - Guangyan Jia 2008
In this note, we prove that if $g$ is uniformly continuous in $z$, uniformly with respect to $(oo,t)$ and independent of $y$, the solution to the backward stochastic differential equation (BSDE) with generator $g$ is unique.
We introduce a new class of Backward Stochastic Differential Equations in which the $T$-terminal value $Y_{T}$ of the solution $(Y,Z)$ is not fixed as a random variable, but only satisfies a weak constraint of the form $E[Psi(Y_{T})]ge m$, for some (possibly random) non-decreasing map $Psi$ and some threshold $m$. We name them textit{BSDEs with weak terminal condition} and obtain a representation of the minimal time $t$-values $Y_{t}$ such that $(Y,Z)$ is a supersolution of the BSDE with weak terminal condition. It provides a non-Markovian BSDE formulation of the PDE characterization obtained for Markovian stochastic target problems under controlled loss in Bouchard, Elie and Touzi cite{BoElTo09}. We then study the main properties of this minimal value. In particular, we analyze its continuity and convexity with respect to the $m$-parameter appearing in the weak terminal condition, and show how it can be related to a dual optimal control problem in Meyer form. These last properties generalize to a non Markovian framework previous results on quantile hedging and hedging under loss constraints obtained in F{o}llmer and Leukert cite{FoLe99,FoLe00}, and in Bouchard, Elie and Touzi cite{BoElTo09}.
179 - Shanjian Tang , Wei Zhong , 2013
In this paper, an optimal switching problem is proposed for one-dimensional reflected backward stochastic differential equations (RBSDEs, for short) where the generators, the terminal values and the barriers are all switched with positive costs. The value process is characterized by a system of multi-dimensional RBSDEs with oblique reflection, whose existence and uniqueness are by no means trivial and are therefore carefully examined. Existence is shown using both methods of the Picard iteration and penalization, but under some different conditions. Uniqueness is proved by representation either as the value process to our optimal switching problem for one-dimensional RBSDEs, or as the equilibrium value process to a stochastic differential game of switching and stopping. Finally, the switched RBSDE is interpreted as a real option.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا