Do you want to publish a course? Click here

BSDEs with weak terminal condition

164   0   0.0 ( 0 )
 Added by Anthony Reveillac
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a new class of Backward Stochastic Differential Equations in which the $T$-terminal value $Y_{T}$ of the solution $(Y,Z)$ is not fixed as a random variable, but only satisfies a weak constraint of the form $E[Psi(Y_{T})]ge m$, for some (possibly random) non-decreasing map $Psi$ and some threshold $m$. We name them textit{BSDEs with weak terminal condition} and obtain a representation of the minimal time $t$-values $Y_{t}$ such that $(Y,Z)$ is a supersolution of the BSDE with weak terminal condition. It provides a non-Markovian BSDE formulation of the PDE characterization obtained for Markovian stochastic target problems under controlled loss in Bouchard, Elie and Touzi cite{BoElTo09}. We then study the main properties of this minimal value. In particular, we analyze its continuity and convexity with respect to the $m$-parameter appearing in the weak terminal condition, and show how it can be related to a dual optimal control problem in Meyer form. These last properties generalize to a non Markovian framework previous results on quantile hedging and hedging under loss constraints obtained in F{o}llmer and Leukert cite{FoLe99,FoLe00}, and in Bouchard, Elie and Touzi cite{BoElTo09}.



rate research

Read More

In this paper, we first study one-dimensional quadratic backward stochastic differential equations driven by $G$-Brownian motions ($G$-BSDEs) with unbounded terminal values. With the help of a $theta$-method of Briand and Hu [4] and nonlinear stochastic analysis techniques, we propose an approximation procedure to prove existence and uniqueness result when the generator is convex (or concave) and terminal value is of exponential moments of arbitrary order. Finally, we also establish the well-posedness of multi-dimensional G-BSDEs with diagonally quadratic generators.
195 - Shanjian Tang , Wei Zhong , 2013
In this paper, an optimal switching problem is proposed for one-dimensional reflected backward stochastic differential equations (RBSDEs, for short) where the generators, the terminal values and the barriers are all switched with positive costs. The value process is characterized by a system of multi-dimensional RBSDEs with oblique reflection, whose existence and uniqueness are by no means trivial and are therefore carefully examined. Existence is shown using both methods of the Picard iteration and penalization, but under some different conditions. Uniqueness is proved by representation either as the value process to our optimal switching problem for one-dimensional RBSDEs, or as the equilibrium value process to a stochastic differential game of switching and stopping. Finally, the switched RBSDE is interpreted as a real option.
This paper is devoted to obtaining a wellposedness result for multidimensional BSDEs with possibly unbounded random time horizon and driven by a general martingale in a filtration only assumed to satisfy the usual hypotheses, i.e. the filtration may be stochastically discontinuous. We show that for stochastic Lipschitz generators and unbounded, possibly infinite, time horizon, these equations admit a unique solution in appropriately weighted spaces. Our result allows in particular to obtain a wellposedness result for BSDEs driven by discrete--time approximations of general martingales.
In this paper, we provide a one-to-one correspondence between the solution Y of a BSDE with singular terminal condition and the solution H of a BSDE with singular generator. This result provides the precise asymptotic behavior of Y close to the final time and enlarges the uniqueness result to a wider class of generators.
170 - Rainer Buckdahn 2018
In [4], the existence of the solution is proved for a scalar linearly growing backward stochastic differential equation (BSDE) if the terminal value is $Lexp{left(mu sqrt{2log{(1+L)}},right)}$-integrable with the positive parameter $mu$ being bigger than a critical value $mu_0$. In this note, we give the uniqueness result for the preceding BSDE.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا