No Arabic abstract
A general consensus now is that there are two physically inequivalent complete decompositions of the nucleon spin, i.e. the decomposition of the canonical type and that of mechanical type. The well-known Jaffe-Manohar decomposition is of the former type. Unfortunately, there is a wide-spread misbelief that this decomposition matches the partonic picture, which states that motion of quarks in the nucleon is approximately free. In the present monograph, we reveal that this understanding is not necessarily correct and that the Jaffe-Manohar decomposition is not such a decomposition, which natively reflects the intrinsic (or static) orbital angular momentum structure of the nucleon.
The question whether the total gluon angular momentum in the nucleon can be decomposed into its spin and orbital parts without conflict with the gauge-invariance principle has been an object of long-lasting debate. Despite a remarkable progress achieved through the recent intensive researches, the following two issues still remains to be clarified more transparently. The first issue is to resolve the apparent conflict between the proposed gauge-invariant decomposition of the total gluon angular momentum and the textbook statement that the total angular momentum of the photon cannot be gauge-invariantly decomposed into its spin and orbital parts. We show that this problem is also inseparably connected with the uniqueness or non-uniqueness problem of the nucleon spin decomposition. The second practically more important issue is that, among the two physically inequivalent decompositions of the nucleon spin, i.e. the canonical type decomposition and the mechanical type decomposition, which can we say is more physical or closer to direct observation ? In the present paper, we try to answer both these questions as clearly as possible.
The nucleon is naturally viewed as a bipartite system of valence spin -- defined by its non-vanishing chiral charge -- and non-valence or sea spin. The sea spin can be traced over to give a reduced density matrix, and it is shown that the resulting entanglement entropy acts as an order parameter of chiral symmetry breaking in the nucleon. In the large-$N_c$ limit, the entanglement entropy vanishes and the valence spin accounts for all of the nucleon spin, while in the limit of maximal entanglement entropy, the nucleon loses memory of the valence spin and consequently has spin dominated by the sea. The nucleon state vector in the chiral basis, fit to low-energy data, gives a valence spin content consistent with experiment and lattice QCD determinations, and has large entanglement entropy.
We introduced a generalized Wilson line gauge link that reproduces both staple and near straight links in different limits. We then studied the gauge-invariant bi-local orbital angular momentum operator with such a general gauge link, in the framework of Chen et. al. decomposition of gauge fields. At the appropriate combination of limits, the operator reproduces both Jaffe-Manohar and Jis operator structure and offers a continuous analytical interpolation between the two in the small-$x$ limit. We also studied the potential OAM which is defined as the difference between the two, and how it depends on the geometry or orientation of the gauge links.
We discuss the uniqueness or non-uniqueness problem of the decomposition of the gluon field into the physical and pure-gauge components, which is the basis of the recently proposed two physically inequivalent gauge-invariant decompositions of the nucleon spin. It is crucialy important to recognize the fact that the standard gauge fixing procedure is essentially a process of projecting out the physical components of the massless gauge field. A complexity of the nonabelian gauge theory as compared with the abelian case is that a closed expression for the physical component can be given only with use of the non-local Wilson line, which is generally path-dependent. It is known that, by choosing an infinitely long straight-line path in space and time, the direction of which is characterized by a constant 4-vector $n^mu$, one can cover a class of gauge called the general axial gauge, containing three popular gauges, i.e. the temporal, the light-cone, and the spatial axial gauge. Within this general axial gauge, we have calculated the 1-loop evolution matrix for the quark and gluon longitudinal spins in the nucleon. We found that the final answer is exactly the same independently of the choices of $n^mu$, which amounts to proving the gauge-independence and path-independence simultaneously, although within a restricted class of gauges and paths. By drawing on all of these findings together with well-established knowledge from gauge theories, we argue against the rapidly spreading view in the community that there are infinitely many decompositions of the nucleon spin.
We present results on the spin and quark content of the nucleon using $N_f=2$ twisted mass clover-improved fermion simulations with a pion mass close to its physical value. We use recently developed methods to obtain accurate results for both connected and disconnected contributions. We provide results for the axial charge, quark and gluon momentum fraction as well as the light, strange and charm $sigma$-terms.