No Arabic abstract
We present theoretical investigations of pressure and temperature driven phase transitions in HgTe quantum wells grown on CdTe buffer. Using the 8-band textbf{k$cdot$p} Hamiltonian we calculate evolution of energy band structure at different quantum well width with hydrostatic pressure up to 20 kBar and temperature ranging up 300 K. In particular, we show that in addition to temperature, tuning of hydrostatic pressure allows to drive transitions between semimetal, band insulator and topological insulator phases. Our realistic band structure calculations reveal that the band inversion under hydrostatic pressure and temperature may be accompanied by non-local overlapping between conduction and valence bands. The pressure and temperature phase diagrams are presented.
We report a direct observation of temperature-induced topological phase transition between trivial and topological insulator in HgTe quantum well. By using a gated Hall bar device, we measure and represent Landau levels in fan charts at different temperatures and we follow the temperature evolution of a peculiar pair of zero-mode Landau levels, which split from the edge of electron-like and hole-like subbands. Their crossing at critical magnetic field $B_c$ is a characteristic of inverted band structure in the quantum well. By measuring the temperature dependence of $B_c$, we directly extract the critical temperature $T_c$, at which the bulk band-gap vanishes and the topological phase transition occurs. Above this critical temperature, the opening of a trivial gap is clearly observed.
We report on temperature-dependent magnetospectroscopy of two HgTe/CdHgTe quantum wells below and above the critical well thickness $d_c$. Our results, obtained in magnetic fields up to 16 T and temperature range from 2 K to 150 K, clearly indicate a change of the band-gap energy with temperature. The quantum well wider than $d_c$ evidences a temperature-driven transition from topological insulator to semiconductor phases. At the critical temperature of 90 K, the merging of inter- and intra-band transitions in weak magnetic fields clearly specifies the formation of gapless state, revealing the appearance of single-valley massless Dirac fermions with velocity of $5.6times10^5$ m$times$s$^{-1}$. For both quantum wells, the energies extracted from experimental data are in good agreement with calculations on the basis of the 8-band Kane Hamiltonian with temperature-dependent parameters.
We study lanthanum mononitride LaN by first-principles calculations. The commonly reported rock-salt structure of $Fmbar{3}m$ symmetry for rare-earth monopnictides is found dynamically unstable for LaN at zero temperature. Using density functional theory and evolutionary crystal prediction, we discover a new, dynamically stable structure with $P1$ symmetry at 0 K. This $P1$-LaN exhibits spontaneous electric polarization. Our ab initio molecular dynamics simulations of finite-temperature phonon spectra further suggest that LaN will undergo ferroelectric and structural transitions from $P1$ to $Fmbar{3}m$ symmetry, when temperature is increased. Moreover, $P1$-LaN will transform to a tetragonal structure with $P4/nmm$ symmetry at a critical pressure $P=18$ GPa at 0 K. Electronic structures computed with an advanced hybrid functional show that the high-temperature rock-salt LaN can change from a trivial insulator to a strong topological insulator at $P sim 14$ GPa. Together, our results indicate that when $P=14 - 18$ GPa, LaN can show simultaneous temperature-induced structural, ferroelectric, and topological transitions. Lanthanum monopnictides thereby provide a rich playground for exploring novel phases and phase transitions driven by temperature and pressure.
HgTe quantum wells possess remarkable physical properties as for instance the quantum spin Hall state and the single-valley analog of graphene, depending on their layer thicknesses and barrier composition. However, double HgTe quantum wells yet contain more fascinating and still unrevealed features. Here we report on the study of the quantum phase transitions in tunnel-coupled HgTe layers separated by CdTe barrier. We demonstrate that this system has a 3/2 pseudo spin degree of freedom, which features a number of particular properties associated with the spin-dependent coupling between HgTe layers. We discover a specific metal phase arising in a wide range of HgTe and CdTe layer thicknesses, in which a gapless bulk and a pair of helical edge states coexist. This phase holds some properties of bilayer graphene such as an unconventional quantum Hall effect and an electrically-tunable band gap. In this bilayer graphene phase, electric field opens the band gap and drives the system into the quantum spin Hall state. Furthermore, we discover a new type of quantum phase transition arising from a mutual inversion between second electron- and hole-like subbands. This work paves the way towards novel materials based on multi-layered topological insulators.
We report on magnetospectroscopy of HgTe quantum wells in magnetic fields up to 45 T in temperature range from 4.2 K up to 185 K. We observe intra- and inter-band transitions from zero-mode Landau levels, which split from the bottom conduction and upper valence subbands, and merge under the applied magnetic field. To describe experimental results, realistic temperature-dependent calculations of Landau levels have been performed. We show that although our samples are topological insulators at low temperatures only, the signature of such phase persists in optical transitions at high temperatures and high magnetic fields. Our results demonstrate that temperature-dependent magnetospectroscopy is a powerful tool to discriminate trivial and topological insulator phases in HgTe quantum wells.