Do you want to publish a course? Click here

Magnetic phases of quasi-two-dimensional antiferromagnet on triangular lattice CuCrO$_2$

85   0   0.0 ( 0 )
 Added by Leonid Svistov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have carried out $^{63,65}$Cu NMR spectra measurements in magnetic field up to about 45~T on single crystal of a multiferroic triangular antiferromagnet CuCrO$_2$. The measurements were performed for magnetic fields aligned along the crystal $c$-axis. Field and temperature evolution of the spectral shape demonstrates a number of phase transitions. It was found that the 3D magnetic ordering takes place in the low field range ($Hlesssim15$~T). At higher fields magnetic structures form within individual triangular planes whereas the spin directions of the magnetic ions from neighboring planes are not correlated. It is established that the 2D-3D transition is hysteretic in field and temperature. Lineshape analysis reveals several possible magnetic structures existing within individual planes for different phases of CuCrO$_2$. Within certain regions on the magnetic H-T phase diagram of CuCrO$_2$ a 3D magnetic ordering with tensor order parameter is expected.



rate research

Read More

The magnetic phases of a triangular-lattice antiferromagnet, CuCrO$_2$, were investigated in magnetic fields along to the $c$ axis, $H$ // [001], up to 120 T. Faraday rotation and magneto-absorption spectroscopy were used to unveil the rich physics of magnetic phases. An up-up-down (UUD) magnetic structure phase was observed around 90--105 T at temperatures around 10 K. Additional distinct anomalies adjacent to the UUD phase were uncovered and the Y-shaped and the V-shaped phases are proposed to be viable candidates. These ordered phases are emerged as a result of the interplay of geometrical spin frustration, single ion anisotropy and thermal fluctuations in an environment of extremely high magnetic fields.
Using electron-spin-resonance (ESR) technique we investigate the magnetic structure of CuCrO2, quasi-two-dimensional antiferromagnet with weakly distorted triangular lattice. Resonance frequencies and the excitation conditions in CuCrO2 at low temperatures are well described in the frame of cycloidal spin structure, defined by two susceptibilities parallel and perpendicular to the spin plane and by a biaxial crystal-field anisotropy. In agreement with the calculations, the character of the eigenmodes changes drastically at the spin-flop transition. The splitting of the observed modes can be well attributed to the resonances from different domains. The domain structure in CuCrO2 can be controlled by annealing of the sample in magnetic field.
We report the magnetization ($chi$, $M$), specific heat ($C_{text{P}}$), and neutron powder diffraction results on a quasi-two-dimensional $S$ = 2 square lattice antiferromagnet Ba$_2$FeSi$_2$O$_7$ consisting of FeO$_4$ tetragons with a large compressive distortion (27%). Despite of the quasi-two-dimensional lattice structure, both $chi$ and $C_{text{P}}$ present three dimensional magnetic long-range order below the Neel temperature $T_{text{N}}$ = 5.2 K. Neutron diffraction data shows a collinear $Q_{m}$ = (1,0,0.5) antiferromagnetic (AFM) structure with the in-plane ordered magnetic moment suppressed by 26% below $T_{text{N}}$. Both the AFM structure and the suppressed moments are well explained by the Monte Carlo simulation with a large single-ion ab-plane anisotropy $D$ = 1.4 meV and a rather small in-plane Heisenberg exchange $J_{text{intra}}$ = 0.15 meV. The characteristic two dimensional spin fluctuations can be recognized in the magnetic entropy release and diffuse scattering above $T_{text{N}}$. This new quasi-2D magnetic system also displays unusual non-monotonic dependence of the $T_{text{N}}$ as a function of magnetic field $H$.
Non-collinear two-dimensional triangular lattice antiferromagnets (2D TLAF) are currently an area of very active research due to their unique magnetic properties, which lead to non-trivial quantum effects that experimentally manifest themselves in the spin excitation spectra. Recent examples of such insulating 2D TLAF include (Y,Lu)MnO$_3$, LiCrO$_2$, and CuCrO$_2$. Hexagonal LuFeO3 is a recently synthesized 2D TLAF which exhibits properties of an ideal multiferroic material, partially because of the high spin ($S=5/2$) and strong magnetic super-exchange interactions. We report the full range of spin dynamics in a bulk single crystal of (Lu$_{0.6}$Sc$_{0.4}$)FeO$_3$ (Sc doping to stabilize the hexagonal structure) measured via time-of-flight inelastic neutron scattering. Modeling with linear spin wave theory yields a nearest neighbor exchange coupling of $J$ = 4.0(2) meV (DFT calculations for $h$-LuFeO$_3$ predicted a value of 6.31 meV) and anisotropy values of $K_D$ = 0.17(1) meV (easy plane) and $K_A$~=~-0.05(1)~meV (local easy axis). It is observed that the magnon bandwidth of the spin wave spectra is twice as large for $h$-(Lu,Sc)FeO$_3$ as it is for $h$-LuMnO$_3$.
We report on low-temperature heat-transport properties of the spin-1/2 triangular-lattice antiferromagnet Cs$_2$CuCl$_4$. Broad maxima in the thermal conductivity along the three principal axes, observed at about 5 K, are interpreted in terms of the Debye model, including the phonon Umklapp scattering. For thermal transport along the $b$ axis, we observed a pronounced field-dependent anomaly, close to the transition into the three-dimensional long-range-ordered state. No such anomalies were found for the transport along the $a$ and $c$ directions. We argue that this anisotropic behavior is related to an additional heat-transport channel through magnetic excitations, that can best propagate along the direction of the largest exchange interaction. Besides, peculiarities of the heat transport of Cs$_2$CuCl$_4$ in magnetic fields up to the saturation field and above are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا