Do you want to publish a course? Click here

0-$pi$ phase-controllable $thermal$ Josephson junction

372   0   0.0 ( 0 )
 Added by Antonio Fornieri
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two superconductors coupled by a weak link support an equilibrium Josephson electrical current which depends on the phase difference $varphi$ between the superconducting condensates [1]. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows oppositely to the thermal gradient for $ varphi <pi/2$ [2-4]. The direction of both the Josephson charge and heat currents can be inverted by adding a $pi$ shift to $varphi$. In the static electrical case, this effect was obtained in a few systems, e.g. via a ferromagnetic coupling [5,6] or a non-equilibrium distribution in the weak link [7]. These structures opened new possibilities for superconducting quantum logic [6,8] and ultralow power superconducting computers [9]. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from $0$ to $pi$. This is obtained thanks to a superconducting quantum interferometer that allows to fully control the direction of the coherent energy transfer through the junction [10]. This possibility, joined to the completely superconducting nature of our system, provides temperature modulations with unprecedented amplitude of $sim$ 100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components, such as thermal transistors, switches and memory devices [10,11]. These elements, combined with heat interferometers [3,4,12] and diodes [13,14], would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.



rate research

Read More

88 - Jian Huang 2002
Recently Baselmans et al. [Nature, 397, 43 (1999)] showed that the direction of the supercurrent in a superconductor/normal/superconductor Josephson junction can be reversed by applying, perpendicularly to the supercurrent, a sufficiently large control current between two normal reservoirs. The novel behavior of their 4-terminal device (called a controllable PI-junction) arises from the nonequilibrium electron energy distribution established in the normal wire between the two superconductors. We have observed a similar supercurrent reversal in a 3-terminal device, where the control current passes from a single normal reservoir into the two superconductors. We show theoretically that this behavior, although intuitively less obvious, arises from the same nonequilibrium physics present in the 4-terminal device. Moreover, we argue that the amplitude of the PI-state critical current should be at least as large in the 3-terminal device as in a comparable 4-terminal device.
We propose a setup for the experimental realization of unexpected and anisotropic $0$-$pi$ transitions of the Josephson current, in a junction whose link is made of irradiated Weyl semi-metal (WSM), due to the presence of chiral nodes. We show using a Greens function technique that the Josephson current through a time-reversal symmetric WSM has anisotropic periodic oscillations as a function of $k_0L$, where $k_0$ is the (relevant) separation of the chiral nodes and $L$ is the length of the sample. This is unexpected, for time-reversal symmetric systems, although it has been shown earlier for time-reversal symmetry breaking WSMs. We then show that the effective value of $k_0$ can be tuned with precision by irradiating the sample with photons resulting in $0$-$pi$ transitions of the critical current. Finally, we discuss the robustness of our setup.
Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of pi in its ground state for certain thicknesses of the material. Such pi-junctions were first realized experimentally in 2001, and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and pi by changing the relative orientation of the two magnetizations. These controllable 0-pi junctions have immediate applications in cryogenic memory where they serve as a necessary component to an ultra-low power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Phase controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting programmable logic, where they could function in superconducting analogs to field-programmable gate arrays.
The Josephson effect describes supercurrent flowing through a junction connecting two superconducting leads by a thin barrier [1]. This current is driven by a superconducting phase difference $phi$ between the leads. In the presence of chiral and time reversal symmetry of the Cooper pair tunneling process [2] the current is strictly zero when $phi$ vanishes. Only if these underlying symmetries are broken the supercurrent for $phi=0$ may be finite [3-5]. This corresponds to a ground state of the junction being offset by a phase $phi_{0}$, different from 0 or $pi$. Here, we report such a Josephson $phi_{0}$-junction based on a nanowire quantum dot. We use a quantum interferometer device in order to investigate phase offsets and demonstrate that $phi_{0}$ can be controlled by electrostatic gating. Our results have possible far reaching implications for superconducting flux and phase defined quantum bits as well as for exploring topological superconductivity in quantum dot systems.
Topological superconductors can support localized Majorana states at their boundaries. These quasi-particle excitations have non-Abelian statistics that can be used to encode and manipulate quantum information in a topologically protected manner. While signatures of Majorana bound states have been observed in one-dimensional systems, there is an ongoing effort to find alternative platforms that do not require fine-tuning of parameters and can be easily scalable to large numbers of states. Here we present a novel experimental approach towards a two-dimensional architecture. Using a Josephson junction made of HgTe quantum well coupled to thin-film aluminum, we are able to tune between a trivial and a topological superconducting state by controlling the phase difference $phi$ across the junction and applying an in-plane magnetic field. We determine the topological state of the induced superconductor by measuring the tunneling conductance at the edge of the junction. At low magnetic fields, we observe a minimum in the tunneling spectra near zero bias, consistent with a trivial superconductor. However, as the magnetic field increases, the tunneling conductance develops a zero-bias peak which persists over a range of $phi$ that expands systematically with increasing magnetic fields. Our observations are consistent with theoretical predictions for this system and with full quantum mechanical numerical simulations performed on model systems with similar dimensions and parameters. Our work establishes this system as a promising platform for realizing topological superconductivity and for creating and manipulating Majorana modes and will therefore open new avenues for probing topological superconducting phases in two-dimensional systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا