Do you want to publish a course? Click here

Neutron detectors for the ESS diffractometers

109   0   0.0 ( 0 )
 Added by Irina Stefanescu S
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ambitious instrument suite for the future European Spallation Source whose civil construction started recently in Lund, Sweden, demands a set of diverse and challenging requirements for the neutron detectors. For instance, the unprecedented high flux expected on the samples to be investigated in neutron diffraction or reflectometry experiments requires detectors that can handle high counting rates, while the investigation of sub-millimeter protein crystals will only be possible with large-area detectors that can achieve a position resolution as low as 200 {mu}m. This has motivated an extensive research and development campaign to advance the state-of-the-art detector and to find new technologies that can reach maturity by the time the ESS will operate at full potential. This paper presents the key detector requirements for three of the Time-of-Flight diffraction instrument concepts selected by the Scientific Advisory Committee to advance into the phase of preliminary engineering design. We discuss the available detector technologies suitable for this particular instrument class and their major challenges. The detector technologies selected by the instrument teams to collect the diffraction patterns are briefly discussed. Analytical calculations, Monte-Carlo simulations, and real experimental data are used to develop a generic method to esti- mate the event rate in the diffraction detectors. The proposed approach is based upon conservative assumptions that use information and input parameters that reflect our current level of knowledge and understanding of the ESS project. We apply this method to make predictions for the future diffraction instruments, and thus provide additional information that can help the instrument teams with the optimisation of the detector designs.



rate research

Read More

64 - David Milstead 2015
A sensitive search for neutron-antineutron oscillations can provide a unique probe of some of the central questions in particle physics and cosmology: the energy scale and mechanism for baryon number violation, the origin of the baryon-antibaryon asymmetry of the universe, and the mechanism for neutrino mass generation. A remarkable opportunity has emerged to search for such oscillations with the construction of the European Spallation Source (ESS). A collaboration has been formed which has proposed a search at the ESS, which would provide a sensitivity to the oscillation probability which is three orders of magnitude greater than that achieved at an ILL experiment at which the present best limit on free neutron-antineutron oscillations was obtained.
The functions of the Low-Level Radio Frequency (LLRF) system at European Spallation Source (ESS) are implemented on different Field-Programmable Gate Array (FPGA) boards in a Micro Telecommunications Computing Architecture (MTCA) crate. Besides the algorithm, code that provides access to the peripherals connected to the FPGA is necessary. In order to provide a common platform for the FPGA developments at ESS - the ESS FPGA Framework has been designed. The framework facilitates the integration of different algorithms on different FPGA boards. Three functions are provided by the framework: (1) Communication interfaces to peripherals, e.g. Analog-to-Digital Converters (ADCs) and on-board memory, (2) Upstream communication with the control system over Peripheral Component Interconnect Express (PCIe), and (3) Configuration of the on-board peripherals. To keep the framework easily extensible by Intellectual Property (IP) blocks and to enable seamless integration with the Xilinx design tools, the Advanced eXtensible Interface version 4 (AXI4) bus is the chosen communication interconnect. Furthermore, scripts automatize the building of the FPGA configuration, software components and the documentation. The LLRF control algorithms have been successfully integrated into the framework.
The 3He-based neutron detectors are no longer the default solution for neutron scattering applications. Both the inability of fulfilling the requirements in performance, needed for the new instruments, and the shortage of 3He, drove a series of research programs aiming to find new technologies for neutron detection. The characteristics of the new detector technologies have been extensively tested to prove their effectiveness with respect to the state-of-the-art technology. Among these, the background rejection capability is crucial to determine. The signal-to-background ratio is strongly related to the performance figure-of-merit for most instruments. These are designed to exploit the high flux expected from the new high intensity neutron sources. Therefore, an inadequate background rejection could significantly affect the measurements, leading to detector saturation and misleading events. This is of particular importance for the kind of techniques in which the signals are rather weak. For the first time, the sensitivity of 3He detectors to fast neutrons, up to En = 10 MeV, has been estimated. Two independent measurements are presented: a direct calculation based on a subtraction method used to disentangle the thermal and the fast neutron contribution, while a further evidence is calculated indirectly through a comparison with the recently published data from a 10B-based detector. Both investigations give a characterization on the order of magnitude for the sensitivity. A set of simulations is presented as well in order to support and to validate the results of the measurements. A sensitivity of 4x10-3 is observed from the data. This is two orders of magnitude higher than that previously observed in 10B-based detectors.
123 - V. Merlo , M. Salvato , M. Cirillo 2014
A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $rightarrow$ $alpha$+ 7Li , with $alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the future perspectives leading to neutron detectors with unprecedented spatial resolutions and efficiency are highlighted.
89 - E. Dian 2018
Inelastic neutron scattering instruments require very low background; therefore the proper shielding for suppressing the scattered neutron background, both from elastic and inelastic scattering is essential. The detailed understanding of the background scattering sources is required for effective suppression. The Multi-Grid thermal neutron detector is an Ar/CO$_{2}$ gas filled detector with a $^{10}$B$_{4}$C neutron converter coated on aluminium substrates. It is a large-area detector design that will equip inelastic neutron spectrometers at the European Spallation Source (ESS). To this end a parameterised Geant4 model is built for the Multi-Grid detector. This is the first time thermal neutron scattering background sources have been modelled in a detailed simulation of detector response. The model is validated via comparison with measured data of prototypes installed on the IN6 instrument at ILL and on the CNCS instrument at SNS. The effect of scattering originating in detector components is smaller than effects originating elsewhere.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا