Do you want to publish a course? Click here

Resonance fluorescence from a telecom-wavelength quantum dot

149   0   0.0 ( 0 )
 Added by Adetunmise Dada
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on resonance fluorescence from a single quantum dot emitting at telecom wavelengths. We perform high-resolution spectroscopy and observe the Mollow triplet in the Rabi regime--a hallmark of resonance fluorescence. The measured resonance-fluorescence spectra allow us to rule out pure dephasing as a significant decoherence mechanism in these quantum dots. Combined with numerical simulations, the experimental results provide robust characterisation of charge noise in the environment of the quantum dot. Resonant control of the quantum dot opens up new possibilities for on-demand generation of indistinguishable single photons at telecom wavelengths as well as quantum optics experiments and direct manipulation of solid-state qubits in telecom-wavelength quantum dots.



rate research

Read More

We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a five-fold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.
We analyze the light scattered by a single InAs quantum dot interacting with a resonant continuous-wave laser. High resolution spectra reveal clear distinctions between coherent and incoherent scattering, with the laser intensity spanning over four orders of magnitude. We find that the fraction of coherently scattered photons can approach unity under sufficiently weak or detuned excitation, ruling out pure dephasing as a relevant decoherence mechanism. We show how spectral diffusion shapes spectra, correlation functions, and phase-coherence, concealing the ideal radiatively-broadened two-level system described by Mollow.
The electronic energy levels and optical transitions of a semiconductor quantum dot are subject to dynamics within the solid-state environment. In particular, fluctuating electric fields due to nearby charge traps or other quantum dots shift the transition frequencies via the Stark effect. The environment dynamics are mapped directly onto the fluorescence under resonant excitation and diminish the prospects of quantum dots as sources of indistinguishable photons in optical quantum computing. Here, we present an analysis of resonance fluorescence fluctuations based on photon counting statistics which captures the underlying time-averaged electric field fluctuations of the local environment. The measurement protocol avoids dynamic feedback on the electric environment and the dynamics of the quantum dots nuclear spin bath by virtue of its resonant nature and by keeping experimental control parameters such as excitation frequency and external fields constant throughout. The method introduced here is experimentally undemanding.
We present the theory of resonance fluorescence from an asymmetric quantum dot driven by a two-component electromagnetic field with two different frequencies, polarizations and amplitudes (bichromatic field) in the regime of strong light-matter coupling. It follows from the elaborated theory that the broken inversion symmetry of the driven quantum system and the bichromatic structure of the driving field result in unexpected features of the resonance fluorescence, including the infinite set of Mollow triplets, the quench of fluorescence peaks induced by the dressing field, and the oscillating behavior of the fluorescence intensity as a function of the dressing field amplitude. These quantum phenomena are of general physical nature and, therefore, can take place in various double-driven quantum systems with broken inversion symmetry.
165 - H. Ramp , T.J. Clark , B.D. Hauer 2020
Microwave to optical transduction has received a great deal of interest from the cavity optomechanics community as a landmark application for electro-optomechanical systems. In this Letter, we demonstrate a novel transducer that combines high-frequency mechanical motion and a microwave cavity for the first time. The system consists of a 3D microwave cavity and a gallium arsenide optomechanical crystal, which has been placed in the microwave electric field maximum. This allows the microwave cavity to actuate the gigahertz-frequency mechanical breathing mode in the optomechanical crystal through the piezoelectric effect, which is then read out using a telecom optical mode. The gallium arsenide optomechanical crystal is a good candidate for low-noise microwave-to-telecom transduction, as it has been previously cooled to the mechanical ground state in a dilution refrigerator. Moreover, the 3D microwave cavity architecture can naturally be extended to couple to superconducting qubits and to create hybrid quantum systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا