Do you want to publish a course? Click here

Unexpected superconductivity at nanoscale junctions made on the topological crystalline insulator Pb$_{0.6}$Sn$_{0.4}$Te

48   0   0.0 ( 0 )
 Added by Goutam Sheet
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Discovery of exotic phases of matter from the topologically non-trivial systems not only makes the research on topological materials more interesting but also enriches our understanding of the fascinating physics of such materials. Pb$_{0.6}$Sn$_{0.4}$Te was recently shown to be a topological crystalline insulator. Here we show that by forming a mesoscopic point-contact using a normal non-superconducting elemental metal on the surface of Pb$_{0.6}$Sn$_{0.4}$Te a novel superconducting phase is created locally in a confined region under the point-contact. This happens while the bulk of the sample remains to be non-superconducting and the superconducting phase emerges as a nano-droplet under the point-contact. The superconducting phase shows a high transition temperature $T_c$ that varies for different point-contacts and falls in a range between 3.7 K and 6.5 K. Therefore, this Letter presents the discovery of a new superconducting phase on the surface of a topological crystalline insulator and the discovery is expected to shed light on the mechanism of induced superconductivity in topologically non-trivial systems in general.



rate research

Read More

Indium substitution turns the topological crystalline insulator (TCI) Pb$_{0.5}$Sn$_{0.5}$Te into a possible topological superconductor. To investigate the effect of the indium concentration on the crystal structure and superconducting properties of (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_{x}$Te, we have grown high-quality single crystals using a modified floating-zone method, and have performed systematic studies for indium content in the range $0leq xleq 0.35$. We find that the single crystals retain the rock salt structure up to the solubility limit of indium ($xsim0.30$). Experimental dependences of the superconducting transition temperature ($T_c$) and the upper critical magnetic field ($H_{c2}$) on the indium content $x$ have been measured. The maximum $T_c$ is determined to be 4.7 K at $x=0.30$, with $mu_0H_{c2}(T=0)approx 5$ T.
148 - A. Sapkota , Y. Li , B. L. Winn 2020
We present a neutron scattering study of phonons in single crystals of (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te with $x=0$ (metallic, but nonsuperconducting) and $x=0.2$ (nonmetallic normal state, but superconducting). We map the phonon dispersions (more completely for $x=0$) and find general consistency with theoretical calculations, except for the transverse and longitudinal optical (TO and LO) modes at the Brillouin zone center. At low temperature, both modes are strongly damped but sit at a finite energy ($sim4$ meV in both samples), shifting to higher energy at room temperature. These modes are soft due to a proximate structural instability driven by the sensitivity of Pb-Te and Sn-Te $p$-orbital hybridization to off-center displacements of the metal atoms. The impact of the soft optical modes on the low-energy acoustic modes is inferred from the low thermal conductivity, especially at low temperature. Given that the strongest electron-phonon coupling is predicted for the LO mode, which should be similar for both studied compositions, it is intriguing that only the In-doped crystal is superconducting. In addition, we observe elastic diffuse (Huang) scattering that is qualitatively explained by the difference in Pb-Te and Sn-Te bond lengths within the lattice of randomly distributed Pb and Sn sites. We also confirm the presence of anomalous diffuse low-energy atomic vibrations that we speculatively attribute to local fluctuations of individual Pb atoms between off-center sites.
We present inelastic neutron scattering results of phonons in (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te powders, with $x=0$ and 0.3. The $x=0$ sample is a topological crystalline insulator, and the $x=0.3$ sample is a superconductor with a bulk superconducting transition temperature $T_c$ of 4.7 K. In both samples, we observe unexpected van Hove singularities in the phonon density of states at energies of 1--2.5 meV, suggestive of local modes. On cooling the superconducting sample through $T_c$, there is an enhancement of these features for energies below twice the superconducting-gap energy. We further note that the superconductivity in (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te occurs in samples with normal-state resistivities of order 10 m$Omega$~cm, indicative of bad-metal behavior. Calculations based on density functional theory suggest that the superconductivity is easily explainable in terms of electron-phonon coupling; however, they completely miss the low-frequency modes and do not explain the large resistivity. While the bulk superconducting state of (Pb$_{0.5}$Sn$_{0.5}$)$_{0.7}$In$_{0.3}$Te appears to be driven by phonons, a proper understanding will require ideas beyond simple BCS theory.
We study Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ multi-band superconductor with $T_c=14$K by polarization-resolved Raman spectroscopy. Deep in the superconducting state, we detect pair-breaking excitation at 45cm$^{-1}$ ($2Delta=5.6$meV) in the $XY$($B_{2g}$) scattering geometry, consistent with twice of the superconducting gap energy (3 meV) revealed by ARPES on the hole-like Fermi pocket with $d_{xz}/d_{yz}$ character. We analyze the superconductivity induced phonon self-energy effects for the $B_{1g}$(Fe) phonon and estimate the electron-phonon coupling constant $lambda^Gamma approx 0.026$, which is insufficient to explain superconductivity with $T_c=14$K.
We devise a new proximity junction configuration where an s-wave superconductivity and the superconductivity of Sr2RuO4 interfere with each other. We reproducibly observe in such a Pb/Ru/Sr2RuO4 junction with a single Pb electrode that the critical current Ic drops sharply just below the bulk Tc of Sr2RuO4 and furthermore increases again below a certain temperature below Tc. In order to explain this extraordinary temperature dependence of Ic, we propose a competition effect involving topologically distinct superconducting phases around Ru inclusions. Thus, such a device may be called a topological superconducting junction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا