Controlling a complex network towards a desire state is of great importance in many applications. Existing works present an approximate algorithm to find the driver nodes used to control partial nodes of the network. However, the driver nodes obtained by this algorithm depend on the matching order of nodes and cannot get the optimum results. Here we present a novel algorithm to find the driver nodes for target control based on preferential matching. The algorithm elaborately arrange the matching order of nodes in order to minimize the size of the driver nodes set. The results on both synthetic and real networks indicate that the performance of proposed algorithm are better than the previous one. The algorithm may have various application in controlling complex networks.
Minimum driver node sets (MDSs) play an important role in studying the structural controllability of complex networks. Recent research has shown that MDSs tend to avoid high-degree nodes. However, this observation is based on the analysis of a small number of MDSs, because enumerating all of the MDSs of a network is a #P problem. Therefore, past research has not been sufficient to arrive at a convincing conclusion. In this paper, first, we propose a preferential matching algorithm to find MDSs that have a specific degree property. Then, we show that the MDSs obtained by preferential matching can be composed of high- and medium-degree nodes. Moreover, the experimental results also show that the average degree of the MDSs of some networks tends to be greater than that of the overall network, even when the MDSs are obtained using previous research method. Further analysis shows that whether the driver nodes tend to be high-degree nodes or not is closely related to the edge direction of the network.
A self-organization of efficient and robust networks is important for a future design of communication or transportation systems, however both characteristics are incompatible in many real networks. Recently, it has been found that the robustness of onion-like structure with positive degree-degree correlations is optimal against intentional attacks. We show that, by biologically inspired copying, an onion-like network emerges in the incremental growth with functions of proxy access and reinforced connectivity on a space. The proposed network consists of the backbone of tree-like structure by copyings and the periphery by adding shortcut links between low degree nodes to enhance the connectivity. It has the fine properties of the statistically self-averaging unlike the conventional duplication-divergence model, exponential-like degree distribution without overloaded hubs, strong robustness against both malicious attacks and random failures, and the efficiency with short paths counted by the number of hops as mediators and by the Euclidean distances. The adaptivity to heal over and to recover the performance of networking is also discussed for a change of environment in such disasters or battlefields on a geographical map. These properties will be useful for a resilient and scalable infrastructure of network systems even in emergent situations or poor environments.
A preferential attachment model for a growing network incorporating deletion of edges is studied and the expected asymptotic degree distribution is analyzed. At each time step $t=1,2,ldots$, with probability $pi_1>0$ a new vertex with one edge attached to it is added to the network and the edge is connected to an existing vertex chosen proportionally to its degree, with probability $pi_2$ a vertex is chosen proportionally to its degree and an edge is added between this vertex and a randomly chosen other vertex, and with probability $pi_3=1-pi_1-pi_2<1/2$ a vertex is chosen proportionally to its degree and a random edge of this vertex is deleted. The model is intended to capture a situation where high-degree vertices are more dynamic than low-degree vertices in the sense that their connections tend to be changing. A recursion formula is derived for the expected asymptotic fraction $p_k$ of vertices with degree $k$, and solving this recursion reveals that, for $pi_3<1/3$, we have $p_ksim k^{-(3-7pi_3)/(1-3pi_3)}$, while, for $pi_3>1/3$, the fraction $p_k$ decays exponentially at rate $(pi_1+pi_2)/2pi_3$. There is hence a non-trivial upper bound for how much deletion the network can incorporate without loosing the power-law behavior of the degree distribution. The analytical results are supported by simulations.
Innovation is the driving force of human progress. Recent urn models reproduce well the dynamics through which the discovery of a novelty may trigger further ones, in an expanding space of opportunities, but neglect the effects of social interactions. Here we focus on the mechanisms of collective exploration and we propose a model in which many urns, representing different explorers, are coupled through the links of a social network and exploit opportunities coming from their contacts. We study different network structures showing, both analytically and numerically, that the pace of discovery of an explorer depends on its centrality in the social network. Our model sheds light on the role that social structures play in discovery processes.
Community detection or clustering is a crucial task for understanding the structure of complex systems. In some networks, nodes are permitted to be linked by either positive or negative edges; such networks are called signed networks. Discovering communities in signed networks is more challenging than that in unsigned networks. In this study, we innovatively develop a non-backtracking matrix of signed networks, theoretically derive a detectability threshold for this matrix, and demonstrate the feasibility of using the matrix for community detection. We further improve the developed matrix by considering the balanced paths in the network (referred to as a balanced non-backtracking matrix). Simulation results demonstrate that the algorithm based on the balanced nonbacktracking matrix significantly outperforms those based on the adjacency matrix and the signed non-backtracking matrix. The proposed (improved) matrix shows great potential for detecting communities with or without overlap.