Do you want to publish a course? Click here

Implications of Coupling in Quantum Thermodynamic Machines

89   0   0.0 ( 0 )
 Added by George Thomas
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study coupled quantum systems as the working media of thermodynamic machines. Under a suitable phase-space transformation, the coupled systems can be expressed as a composition of independent subsystems. We find that for the coupled systems, the figures of merit, that is the efficiency for engine and the coefficient of performance for refrigerator, are bounded (both from above and from below) by the corresponding figures of merit of the independent subsystems. We also show that the optimum work extractable from a coupled system is upper bounded by the optimum work obtained from the uncoupled system, thereby showing that the quantum correlations do not help in optimal work extraction. Further, we study two explicit examples, coupled spin-$1/2$ systems and coupled quantum oscillators with analogous interactions. Interestingly, for particular kind of interactions, the efficiency of the coupled oscillators outperforms that of the coupled spin-$1/2$ systems when they work as heat engines. However, for the same interaction, the coefficient of performance behaves in a reverse manner, while the systems work as the refrigerator. Thus the same coupling can cause opposite effects in the figures of merit of heat engine and refrigerator.



rate research

Read More

Interesting effects arise in cyclic machines where both heat and ergotropy transfer take place between the energising bath and the system (the working fluid). Such effects correspond to unconventional decompositions of energy exchange between the bath and the system into heat and work, respectively, resulting in efficiency bounds that may surpass the Carnot efficiency. However, these effects are not directly linked with quantumness, but rather with heat and ergotropy, the likes of which can be realised without resorting to quantum mechanics.
Thermal machines perform useful tasks--such as producing work, cooling, or heating--by exchanging energy, and possibly additional conserved quantities such as particles, with reservoirs. Here we consider thermal machines that perform more than one useful task simultaneously, terming these hybrid thermal machines. We outline their restrictions imposed by the laws of thermodynamics and we quantify their performance in terms of efficiencies. To illustrate their full potential, reservoirs that feature multiple conserved quantities, described by generalized Gibbs ensembles, are considered. A minimal model for a hybrid thermal machine is introduced, featuring three reservoirs and two conserved quantities, e.g., energy and particle number. This model can be readily implemented in a thermoelectric setup based on quantum dots, and hybrid regimes are accessible considering realistic parameters.
Some of the oldest and most important applications of thermodynamics are operations of refrigeration as well as production of useful energy. Part of the efforts to understand and develop thermodynamics in the quantum regime have been focusing on harnessing quantum effects to such operations. In this review we present the recent developments regarding the role of quantum coherences in the performances of thermal machines --the devices realising the above thermodynamic operations. While this is known to be an intricate subject, in part because being largely model-dependent, the review of the recent results allow us to identify some general tendencies and to suggest some future directions.
The efficiency of cyclic heat engines is limited by the Carnot bound. This bound follows from the second law of thermodynamics and is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. By contrast, the efficiency of engines powered by quantum non-thermal baths has been claimed to surpass the thermodynamic Carnot bound. The key to understanding the performance of such engines is a proper division of the energy supplied by the bath to the system into heat and work, depending on the associated change in the system entropy and ergotropy. Due to their hybrid character, the efficiency bound for quantum engines powered by a non-thermal bath does not solely follow from the laws of thermodynamics. Hence, the thermodynamic Carnot bound is inapplicable to such hybrid engines. Yet, they do not violate the principles of thermodynamics. An alternative means of boosting machine performance is the concept of heat-to-work conversion catalysis by quantum non-linear (squeezed) pumping of the piston mode. This enhancement is due to the increased ability of the squeezed piston to store ergotropy. Since the catalyzed machine is fueled by thermal baths, it adheres to the Carnot bound. We conclude by arguing that it is not quantumness per se that improves the machine performance, but rather the properties of the baths, the working fluid and the piston that boost the ergotropy and minimize the wasted heat in both the input and the output.
The seminal work by Sadi Carnot in the early nineteenth century provided the blueprint of a reversible heat engine and the celebrated second law of thermodynamics eventually followed. Almost two centuries later, the quest to formulate a quantum theory of the thermodynamic laws has thus unsurprisingly motivated physicists to visualise what are known as `quantum thermal machines (QTMs). In this article, we review the prominent developments achieved in the theoretical construction as well as understanding of QTMs, beginning from the formulation of their earliest prototypes to recent models. We also present a detailed introduction and highlight recent progress in the rapidly developing field of `quantum batteries.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا