Do you want to publish a course? Click here

Frustrated double and single ionization in a two-electron triatomic molecule H$^+_3$

285   0   0.0 ( 0 )
 Added by Ahai Chen
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using a semi-classical model, we study the formation of highly excited neutral fragments during the fragmentation of $mathrm{H_3^+}$, a two-electron triatomic molecule, driven by an intense near-IR laser field. To do so, we first formulate a microcanonical distribution for arbitrary one-electron triatomic molecules. We then study frustrated double and single ionization in strongly-driven $mathrm{H_3^+}$ and compute the kinetic energy release of the nuclei for these two processes. Moreover, we investigate the dependence of frustrated ionization on the strength of the laser field as well as on the geometry of the initial molecular state.



rate research

Read More

80 - A. Chen , H. Price , A. Staudte 2016
Using a semi-classical model, we investigate frustrated double ionization (FDI) in $mathrm{D_3^+}$, a two-electron triatomic molecule, when driven by an intense, linearly polarized, near-infrared (800 nm) laser field. We compute the kinetic energy release of the nuclei and find a good agreement between experiment and our model. We explore the two pathways of FDI and show that, with increasing field strength, over-the-barrier ionization overtakes tunnel ionization as the underlying mechanism of FDI. Moreover, we compute the angular distribution of the ion fragments for FDI and identify a feature that can potentially be observed experimentally and is a signature of only one of the two pathways of FDI.
Triple-differential cross sections for two-photon double ionization of molecular hydrogen are presented for a central photon energy of 30 eV. The calculations are based on a fully {it ab initio}, nonperturbative, approach to the time-dependent Schroedinger equation in prolate spheroidal coordinates, discretized by a finite-element discrete-variable-representation. The wave function is propagated in time for a few femtoseconds using the short, iterative Lanczos method to study the correlated response of the two photoelectrons to short, intense laser radiation. The current results often lie in between those of Colgan {it et al} [J. Phys. B {bf 41} (2008) 121002] and Morales {it et al} [J. Phys. B {bf 41} (2009) 134013]. However, we argue that these individual predictions should not be compared directly to each other, but preferably to experimental data generated under well-defined conditions.
We demonstrate significant enhancement of frustrated double ionization (FDI) in the two-electron triatomic molecule D$_{3}^{+}$ when driven by counter-rotating two-color circular (CRTC) laser fields. We employ a three-dimensional semiclassical model that fully accounts for electron and nuclear motion in strong fields. For different pairs of wavelengths, we compute the probabilities of the FDI pathways as a function of the ratio of the two field-strengths. We identify a pathway of frustrated double ionization that is not present in strongly-driven molecules with linear fields. In this pathway the first ionization step is frustrated and electronic correlation is essentially absent. This pathway is responsible for enhancing frustrated double ionization with CRTC fields. We also employ a simple model that predicts many of the main features of the probabilities of the FDI pathways as a function of the ratio of the two field-strengths.
Electron-impact direct double ionization (DDI) process is studied as a sequence of two and three step processes. Contribution from ionization-ionization, ionization-excitation-ionization, and excitation-ionization-ionization processes is taken into account. The present results help to resolve the long-standing discrepancies; in particular, a good agreement with experimental measurements is obtained for double ionization cross-sections of $O^{1+}$, $O^{2+}$, $O^{3+}$, $C^{1+}$, and $Ar^{2+}$ ions. We show that distribution of the energy of scattered and ejected electrons, which participate in the next step of ionization, strongly affects DDI cross-sections.
We report measurements on the H$^{+}$ + H$^{+}$ fragmentation channel following direct single-photon double ionization of neutral NH$_{3}$ at 61.5 eV, where the two photoelectrons and two protons are measured in coincidence using 3-D momentum imaging. We identify four dication electronic states that contribute to H$^{+}$ + H$^{+}$ dissociation, based on our multireference configuration-interaction calculations of the dication potential energy surfaces. The extracted branching ratios between these four dication electronic states are presented. Of the four dication electronic states, three dissociate in a concerted process, while the fourth undergoes a sequential fragmentation mechanism. We find evidence that the neutral NH fragment or intermediate NH$^+$ ion is markedly ro-vibrationally excited. We also identify differences in the relative emission angle between the two photoelectrons as a function of their energy sharing for the four different dication states, which bare some similarities to previous observations made on atomic targets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا