We analyze an AC-driven dimer chain connected to a strongly biased electron source and drain. It turns out that the resulting transport exhibits fingerprints of topology. They are particularly visible in the driving-induced current suppression and the Fano factor. Thus, shot noise measurements provide a topological phase diagram as a function of the driving parameters. The observed phenomena can be explained physically by a mapping to an effective time-independent Hamiltonian and the emergence of edge states. Moreover, by considering quantum dissipation, we determine the requirements for the coherence properties in a possible experimental realization. For the computation of the zero-frequency noise, we develop an efficient method based on matrix-continued fractions.
Consider two Fermi gases with the same {it average} currents: a transport gas, as in solid-state experiments where the chemical potentials of terminal 1 is $mu+eV$ and of terminal 2 and 3 is $mu$, and a beam, i.e., electrons entering only from terminal 1 having energies between $mu$ and $mu+eV$. By expressing the current noise as a sum over single-particle transitions we show that the temporal current fluctuations are very different: The beam is noisier due to allowed single-particle transitions into empty states below $mu$. Surprisingly, the correlations between terminals 2 and 3 are the same.
(Dated: July 17, 2017) We calculate the electric charge current flowing through a vibrating molecular nanojunction, which is driven by an ac voltage, in its regime of nonlinear oscillations. Without loss of generality, we model the junction by a vibrating molecule which is doubly clamped to two metallic leads which are biased by time-periodic ac voltages. Dressed-electron tunneling between the leads and the molecule drives the mechanical degree of freedom out of equilibrium. In the deep quantum regime, where only a few vibrational quanta are excited, the formation of coherent vibrational resonances affects the dressed-electron tunneling. In turn, back action modifies the electronic ac current passing through the junction. The concert of nonlinear vibrations and ac driving induces quantum transport currents which are antiresonant to the applied ac voltage. Quantum back action on the flowing nonequilibriun current allows us to obtain rather sharp spectroscopic information on the population of the mechanical vibrational states.
A topologically equivalent tight binding model is proposed to study the quantum phase transitions of dimer chain driven by an imaginary ac field. I demonstrate how the partner Hamiltonian is constructed by a similarity transformation to fulfil the $mathcal{PT}$ symmetry. The $mathcal{PT}$ symmetry of the partner model allows us to study the topological properties of the original non-Hermitian model as the Bloch bands of the Hermitian system. The quantum phase transitions are discussed in different frequency regime. The approach has the potential applications to investigate the topological states of matter driven by the complex external parameters.
The non-symmetrized current noise is crucial for the analysis of light emission in nanojunctions. The latter represent non-classical photon emitters whose description requires a full quantum approach. It was found experimentally that light emission can occur with a photon energy exceeding the applied dc voltage, which intuitively should be forbidden due to the Pauli principle. This overbias light emission cannot be described by the single-electron physics, but can be explained by two-electron or even three-electron processes, correlated by a local resonant mode in analogy to the well-known dynamical Coulomb blockade (DCB). Here, we obtain the non-symmetrized noise for junctions driven by an arbitrarily shaped periodic voltage. We find that when the junction is driven, the overbias light emission exhibits intriguingly different features compared to the dc case. In addition to kinks at multiples of the bias voltage, side kinks appear at integer multiples of the ac driving frequency. Our work generalizes the DCB theory of light emission to driven tunnel junctions and opens the avenue for engineered quantum light sources, which can be tuned purely by applied voltages.
We report measurements of current noise in single- and multi-layer graphene devices. In four single-layer devices, including a p-n junction, the Fano factor remains constant to within +/-10% upon varying carrier type and density, and averages between 0.35 and 0.38. The Fano factor in a multi-layer device is found to decrease from a maximal value of 0.33 at the charge-neutrality point to 0.25 at high carrier density. These results are compared to theoretical predictions for shot noise in ballistic and disordered graphene.