Do you want to publish a course? Click here

A road to reality with topological superconductors

58   0   0.0 ( 0 )
 Added by C. W. J. Beenakker
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological states of matter are a source of low-energy quasiparticles, bound to a defect or propagating along the surface. In a superconductor these are Majorana fermions, described by a real rather than a complex wave function. The absence of complex phase factors promises protection against decoherence in quantum computations based on topological superconductivity. This is a tutorial style introduction written for a Nature Physics focus issue on topological matter.

rate research

Read More

The modern understanding of topological insulators is based on Wannier obstructions in position space. Motivated by this insight, we study topological superconductors from a position-space perspective. For a one-dimensional superconductor, we show that the wave function of an individual Cooper pair decays exponentially with separation in the trivial phase and polynomially in the topological phase. For the position-space Majorana representation, we show that the topological phase is characterized by a nonzero Majorana polarization, which captures an irremovable and quantized separation of Majorana Wannier centers from the atomic positions. We apply our results to diagnose second-order topological superconducting phases in two dimensions. Our work establishes a vantage point for the generalization of Topological Quantum Chemistry to superconductivity.
We study superconductors with $n$-fold rotational invariance both in the presence and in the absence of spin-orbit interactions. More specifically, we classify the non-interacting Hamiltonians by defining a series of $Z$-numbers for the Bogoliubov-de Gennes (BdG) symmetry classes of the Altland-Zimbauer classification of random matrices in $1$D, $2$D, and $3$D in the presence of discrete rotational invariance. Our analysis emphasizes the important role played by the angular momentum of the Cooper pairs in the system: for pairings of nonzero angular momentum, the rotation symmetry may be represented projectively, and a projective representation of rotation symmetry may have anomalous properties, including the anti-commutation with the time-reversal symmetry. In 1D and 3D, we show how an $n$-fold axis enhances the topological classification and give additional topological numbers; in 2D, we establish a relation between the Chern number (in class D and CI) and the eigenvalues of rotation symmetry at high-symmetry points. For each nontrivial class in 3D, we write down a minimal effective theory for the surface Majorana states.
126 - Li Mao , Hongxing Xu 2019
Collective modes in two dimensional topological superconductors are studied by an extended random phase approximation theory while considering the influence of vector field of light. In two situations, the s-wave superconductors without spin-orbit-coupling (SOC), and the hybrid semiconductor and s-wave superconductor layers with strong SOC, we get the analytical results for longitudinal modes which are found to be indeed gapless. Further more, the effective modes volumes can be calculated, the electric and magnetic fields can be expressed as the creation and annihilation operators of such modes. So, one can study the interaction of them with other quasi-particles through fields.
We show that a Weyl superconductor can absorb light via a novel surface-to-bulk mechanism, which we dub the topological anomalous skin effect. This occurs even in the absence of disorder for a single-band superconductor, and is facilitated by the topological splitting of the Hilbert space into bulk and chiral surface Majorana states. In the clean limit, the effect manifests as a characteristic absorption peak due to surface-bulk transitions. We also consider the effects of bulk disorder, using the Keldysh response theory. For weak disorder, the bulk response is reminiscent of the Mattis-Bardeen result for $s$-wave superconductors, with strongly suppressed spectral weight below twice the pairing energy, despite the presence of gapless Weyl points. For stronger disorder, the bulk response becomes more Drude-like and the $p$-wave features disappear. We show that the surface-bulk signal survives when combined with the bulk in the presence of weak disorder. The topological anomalous skin effect can therefore serve as a fingerprint for Weyl superconductivity. We also compute the Meissner response in the slab geometry, incorporating the effect of the surface states.
Majorana fermions feature non-Abelian exchange statistics and promise fascinating applications in topological quantum computation. Recently, second-order topological superconductors (SOTSs) have been proposed to host Majorana fermions as localized quasiparticles with zero excitation energy, pointing out a new avenue to facilitate topological quantum computation. We provide a minimal model for SOTSs and systematically analyze the features of Majorana zero modes with analytical and numerical methods. We further construct the fundamental fusion principles of zero modes stemming from a single or multiple SOTS islands. Finally, we propose concrete schemes in different setups formed by SOTSs, enabling us to exchange and fuse the zero modes for non-Abelian braiding and holonomic quantum gate operations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا