No Arabic abstract
High-spin states in $^{84}$Rb are studied by using the $^{70}$Zn($^{18}$O, p3n)$^{84}$Rb reaction at beam energy of 75 MeV. Three high-lying negative-parity bands are established, whose level spacings are very regular, i.e., there dont exist signature splitting. The dipole character of the transitions of these three bands is assigned by the $gamma$-$gamma$ directional correlations of oriented states (DCO) intensity ratios and the multipolarity M1 is suggested by the analogy to multiparticle excitations in neighboring nuclei. The strong M1 and weak or no E2 transitions are observed. All these characteristic features show they are magnetic rotation bands.
High-spin states in the doubly-odd $^{198}$Bi nucleus have been studied by using the $^{185,187}$Re($^{16}$O, xn) reactions at the beam energy of 112.5 MeV. $gamma-gamma$ coincidence were measured by using the INGA array with 15 Compton suppressed clover HPGe detectors. The observed levels have been assigned definite spin-parity. The high spin structure is grouped into three bands (B1, B2 and B3), of which two (B1 and B2) exhibit the properties of magnetic rotation (MR). Tilted axis cranking calculations were carried out to explain the MR bands having large multi-quasiparticle configurations. The calculated results explain the bands B1 and B2 very nicely, confirming the shears mechanism and suggest a crossing of two MR bands in both the cases. The crossing is from 6-qp to 8-qp in band B1 and from 4-qp to 6-qp in band B2, a very rare finding. A semiclassical model has also been used to obtain the particle-hole interaction strengths for the bands B1 and B2, below the band crossing.
High spin states of the nucleus 104Cd have been studied using the Gammapshere array. The level scheme for 104Cd has been revised and evidence for a structure consisting of magnetic dipole transitions is presented. Shell model calculations, published previously, are invoked to support an interpretation of this structure as an incpient case of magnetic rotation where the transversal magnetic dipole moment is not strong enough to break the signature symmetry.
The lifetimes for the high spin levels of the yrast band of $^{110}$Cd has been measured. The estimated B(E2) values decrease with increase in angular momentum. This is the characteristic of Anti magnetic rotation as reported in $^{106,108}$Cd. However, alignment behavior of $^{110}$Cd is completely different from its even-even neighbors. A model based on classical particle plus rotor has been used to explore the underlying systematics and develop a self consistent picture for the observed behavior of these isotopes.
New transitions in neutron rich $^{100}$Y have been identified in a $^9$Be+$^{238}$U experiment with mass- and Z- gates to provide full fragment identification. These transitions and high spin levels of $^{100}$Y have been investigated by analyzing the high statistics $gamma$-$gamma$-$gamma$ and $gamma$-$gamma$-$gamma$-$gamma$ coincidence data from the spontaneous fission of $^{252}$Cf at the Gammasphere detector array. Two new bands, 14 new levels and 23 new transitions have been identified. The $K^{pi}=4^+$ new band decaying to an 1s isomeric state is assigned to be the high-$K$ Gallagher-Moszkowski (GM) partner of the known $K^{pi}=1^+$ band, with the $pi 5/2[522] otimes u 3/2[411]$ configuration. This 4$^+$ band is also proposed to be the pseudo spin partner of the new $K^{pi}=5^+$ band with a 5$^{+}$ $pi 5/2[422] otimes u 5/2[413]$ configuration, to form a $pi 5/2[422] otimes u [312$ $5/2,3/2]$ neutron pseudospin doublet. Constrained triaxial covariant density functional theory and quantal particle rotor model calculations have been applied to interpret the band structure and available electromagnetic transition probabilities and are found in good agreement with experimental values.
Two new bands have been identified in $^{137}$Nd from a high-statistics JUROGAM II gamma-ray spectroscopy experiment. Constrained density functional theory and particle rotor model calculations are used to assign configurations and investigate the band properties, which are well described and understood. It is demonstrated that these two new bands can be interpreted as chiral partners of previously known three-quasiparticle positive- and negative-parity bands. The newly observed chiral doublet bands in $^{137}$Nd represent an important support to the existence of multiple chiral bands in nuclei. The present results constitute the missing stone in the series of Nd nuclei showing multiple chiral bands, which becomes the most extended sequence of nuclei presenting multiple chiral bands in the Segre chart.