Do you want to publish a course? Click here

Anomalous time delays and quantum weak measurements in optical micro-resonators

100   0   0.0 ( 0 )
 Added by Konstantin Bliokh
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study inelastic resonant scattering of a Gaussian wave packet with the parameters close to a zero of the complex scattering coefficient. We demonstrate, both theoretically and experimentally, that such near-zero scattering can result in anomalously-large time delays and frequency shifts of the scattered wave packet. Furthermore, we reveal a close analogy of these anomalous shifts with the spatial and angular Goos-Hanchen optical beam shifts, which are amplified via quantum weak measurements. However, in contrast to other beam-shift and weak-measurement systems, we deal with a one-dimensional scalar wave without any intrinsic degrees of freedom. It is the non-Hermitian nature of the system that produces its rich and non-trivial behaviour. Our results are generic for any scattering problem, either quantum or classical. As an example, we consider the transmission of an optical pulse through a nano-fiber with a side-coupled toroidal micro-resonator. The zero of the transmission coefficient corresponds to the critical coupling conditions. Experimental measurements of the time delays near the critical-coupling parameters verify our weak-measurement theory and demonstrate amplification of the time delay from the typical inverse resonator linewidth scale to the pulse duration scale.



rate research

Read More

119 - Mario Agio 2011
Recent progress in nanotechnology has enabled us to fabricate subwavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interaction, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.
Small perturbations in the dielectric environment around a high quality whispering gallery mode resonator usually lead to a frequency shift of the resonator modes directly proportional to the polarizability of the perturbation. Here, we report experimental observations of strong frequency shifts that can be opposite and even exceed the contribution of the perturbations polarizability. The mode frequencies of a lithium niobate whispering gallery mode resonator are shifted using substrates of refractive indices ranging from 1.50 to 4.22. Both blue- and red-shifts are observed, as well as an increase in mode linewidth, when substrates are moved into the evanescent field of the whispering gallery mode. We compare the experimental results to a theoretical model by Foreman et al. and provide an additional intuitive explanation based on the Goos-Hanchen shift for the optical domain.
157 - J. T. Rubin , L. Deych 2011
In this paper we discuss the force exerted by the field of an optical cavity on a polarizable dipole. We show that the modification of the cavity modes due to interaction with the dipole significantly alters the properties of the force. In particular, all components of the force are found to be non-conservative, and cannot, therefore, be derived from a potential energy. We also suggest a simple generalization of the standard formulas for the optical force on the dipole, which reproduces the results of calculations based on the Maxwell stress tensor.
Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
Refraction at the interface between two materials is fundamental to the interaction of light with photonic devices and to the propagation of light through the atmosphere at large. Underpinning the traditional rules for the refraction of an optical field is the tacit presumption of the separability of its spatial and temporal degrees-of-freedom. We show here that endowing a pulsed beam with precise spatio-temporal spectral correlations unveils remarkable refractory phenomena, such as group-velocity invariance with respect to the refractive index, group-delay cancellation, anomalous group-velocity increase in higher-index materials, and tunable group velocity by varying the angle of incidence. A law of refraction for `space-time wave packets encompassing these effects is verified experimentally in a variety of optical materials. Space-time refraction defies our expectations derived from Fermats principle and offers new opportunities for molding the flow of light and other wave phenomena.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا