Do you want to publish a course? Click here

Nonlinear and Quantum Optics with Whispering Gallery Resonators

134   0   0.0 ( 0 )
 Added by Dmitry Strekalov
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.



rate research

Read More

Whispering gallery mode (WGM) microresonators, benefitting from the ultrahigh quality (Q) factors and small mode volumes, could considerably enhance the light-matter interaction, making it an ideal platform for studying a broad range of nonlinear optical effects. In this review, the progress of optical nonlinear effects in WGM microresonators is comprehensively summarized. First, several basic nonlinear effects in WGM microresonator are reviewed, including not only Pockels effect and Kerr effect, but also harmonic generations, four-wave mixing and stimulated optical scattering effects. Apart from that, nonlinearity induced by thermal effect and in PT-symmetric systems are also discussed. Furthermore, multistep nonlinear optical effects by cascading several nonlinear effects are reviewed, including frequency comb generations. Several selected applications of optical nonlinearity in WGM resonators are finally introduced, such as narrow-linewidth microlasers, nonlinearity induced non-reciprocity and frequency combs.
157 - J. T. Rubin , L. Deych 2011
In this paper we discuss the force exerted by the field of an optical cavity on a polarizable dipole. We show that the modification of the cavity modes due to interaction with the dipole significantly alters the properties of the force. In particular, all components of the force are found to be non-conservative, and cannot, therefore, be derived from a potential energy. We also suggest a simple generalization of the standard formulas for the optical force on the dipole, which reproduces the results of calculations based on the Maxwell stress tensor.
We introduce a microwave circuit architecture for quantum signal processing combining design principles borrowed from high-Q 3D resonators in the quantum regime and from planar structures fabricated with standard lithography. The resulting 2.5D whispering-gallery mode resonators store 98% of their energy in vacuum. We have measured internal quality factors above 3 million at the single photon level and have used the device as a materials characterization platform to place an upper bound on the surface resistance of thin film aluminum of less than 250nOhms.
Quasiclassical approach and geometric optics allow to describe rather accurately whispering gallery modes in convex axisymmetric bodies. Using this approach we obtain practical formulas for the calculation of eigenfrequencies and radiative Q-factors in dielectrical spheroid and compare them with the known solutions for the particular cases and with numerical calculations. We show how geometrical interpretation allows expansion of the method on arbitrary shaped axisymmetric bodies.
We report a theoretical study showing that rogue waves can emerge in whispering gallery mode resonators as the result of the chaotic interplay between Kerr nonlinearity and anomalous group-velocity dispersion. The nonlinear dynamics of the propagation of light in a whispering gallery-mode resonator is investigated using the Lugiato-Lefever equation, and we evidence a range of parameters where rare and extreme events associated with a non-gaussian statistics of the field maxima are observed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا