No Arabic abstract
We introduce a mathematical model on the dynamics of demand and supply incorporating collectability and saturation factors. Our analysis shows that when the fluctuation of the determinants of demand and supply is strong enough, there is chaos in the demand-supply dynamics. Our numerical simulation shows that such a chaos is not an attractor (i.e. dynamics is not approaching the chaos), instead a periodic attractor (of period 3 under the Poincare period map) exists near the chaos, and co-exists with another periodic attractor (of period 1 under the Poincare period map) near the market equilibrium. Outside the basins of attraction of the two periodic attractors, the dynamics approaches infinity indicating market irrational exuberance or flash crash. The period 3 attractor represents the products market cycle of growth and recession, while period 1 attractor near the market equilibrium represents the regular fluctuation of the products market. Thus our model captures more market phenomena besides Marshalls market equilibrium. When the fluctuation of the determinants of demand and supply is strong enough, a three leaf danger zone exists where the basins of attraction of all attractors intertwine and fractal basin boundaries are formed. Small perturbations in the danger zone can lead to very different attractors. That is, small perturbations in the danger zone can cause the market to experience oscillation near market equilibrium, large growth and recession cycle, and irrational exuberance or flash crash.
We propose and analyze numerically a simple dynamical model that describes the firm behaviors under uncertainty of demand forecast. Iterating this simple model and varying some parameters values we observe a wide variety of market dynamics such as equilibria, periodic and chaotic behaviors. Interestingly the model is also able to reproduce market collapses.
This paper deals with the mathematical modeling and numerical simulations related to the coronavirus dynamics. A description is developed based on the framework of susceptible-exposed-infectious-recovered model. Initially, a model verification is carried out calibrating system parameters with data from China, Italy, Iran and Brazil. Afterward, numerical simulations are performed to analyzed different scenarios of COVID-19 in Brazil. Results show the importance of governmental and individual actions to control the number and the period of the critical situations related to the pandemic.
In this article we revisit the classic problem of tatonnement in price formation from a microstructure point of view, reviewing a recent body of theoretical and empirical work explaining how fluctuations in supply and demand are slowly incorporated into prices. Because revealed market liquidity is extremely low, large orders to buy or sell can only be traded incrementally, over periods of time as long as months. As a result order flow is a highly persistent long-memory process. Maintaining compatibility with market efficiency has profound consequences on price formation, on the dynamics of liquidity, and on the nature of impact. We review a body of theory that makes detailed quantitative predictions about the volume and time dependence of market impact, the bid-ask spread, order book dynamics, and volatility. Comparisons to data yield some encouraging successes. This framework suggests a novel interpretation of financial information, in which agents are at best only weakly informed and all have a similar and extremely noisy impact on prices. Most of the processed information appears to come from supply and demand itself, rather than from external news. The ideas reviewed here are relevant to market microstructure regulation, agent-based models, cost-optimal execution strategies, and understanding market ecologies.
In cells and in vitro assays the number of motor proteins involved in biological transport processes is far from being unlimited. The cytoskeletal binding sites are in contact with the same finite reservoir of motors (either the cytosol or the flow chamber) and hence compete for recruiting the available motors, potentially depleting the reservoir and affecting cytoskeletal transport. In this work we provide a theoretical framework to study, analytically and numerically, how motor density profiles and crowding along cytoskeletal filaments depend on the competition of motors for their binding sites. We propose two models in which finite processive motor proteins actively advance along cytoskeletal filaments and are continuously exchanged with the motor pool. We first look at homogeneous reservoirs and then examine the effects of free motor diffusion in the surrounding medium. We consider as a reference situation recent in vitro experimental setups of kinesin-8 motors binding and moving along microtubule filaments in a flow chamber. We investigate how the crowding of linear motor proteins moving on a filament can be regulated by the balance between supply (concentration of motor proteins in the flow chamber) and demand (total number of polymerised tubulin heterodimers). We present analytical results for the density profiles of bound motors, the reservoir depletion, and propose novel phase diagrams that present the formation of jams of motor proteins on the filament as a function of two tuneable experimental parameters: the motor protein concentration and the concentration of tubulins polymerized into cytoskeletal filaments. Extensive numerical simulations corroborate the analytical results for parameters in the experimental range and also address the effects of diffusion of motor proteins in the reservoir.
The problem of portfolio allocation in the context of stocks evolving in random environments, that is with volatility and returns depending on random factors, has attracted a lot of attention. The problem of maximizing a power utility at a terminal time with only one random factor can be linearized thanks to a classical distortion transformation. In the present paper, we address the problem with several factors using a perturbation technique around the case where these factors are perfectly correlated reducing the problem to the case with a single factor. We illustrate our result with a particular model for which we have explicit formulas. A rigorous accuracy result is also derived using a verification result for the HJB equation involved. In order to keep the notations as explicit as possible, we treat the case with one stock and two factors and we describe an extension to the case with two stocks and two factors.