Do you want to publish a course? Click here

First detection of gas-phase methanol in a protoplanetary disk

137   0   0.0 ( 0 )
 Added by Catherine Walsh
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first detection of gas-phase methanol in a protoplanetary disk (TW Hya) is presented. In addition to being one of the largest molecules detected in disks to date, methanol is also the first disk organic molecule with an unambiguous ice chemistry origin. The stacked methanol emission, as observed with ALMA, is spectrally resolved and detected across six velocity channels ($>3 sigma$), reaching a peak signal-to-noise of $5.5sigma$, with the kinematic pattern expected for TW~Hya. Using an appropriate disk model, a fractional abundance of $3times 10^{-12} - 4 times 10^{-11}$ (with respect to H$_2$) reproduces the stacked line profile and channel maps, with the favoured abundance dependent upon the assumed vertical location (midplane versus molecular layer). The peak emission is offset from the source position suggesting that the methanol emission has a ring-like morphology: the analysis here suggests it peaks at $approx 30$~AU reaching a column density $approx 3-6times10^{12}$~cm$^{-2}$. In the case of TW Hya, the larger (up to mm-sized) grains, residing in the inner 50~AU, may thus host the bulk of the disk ice reservoir. The successful detection of cold gas-phase methanol in a protoplanetary disk implies that the products of ice chemistry can be explored in disks, opening a window to studying complex organic chemistry during planetary system formation.



rate research

Read More

78 - Alice S. Booth 2019
Measurements of the gas mass are necessary to determine the planet formation potential of protoplanetary disks. Observations of rare CO isotopologues are typically used to determine disk gas masses; however, if the line emission is optically thick this will result in an underestimated disk mass. With ALMA we have detected the rarest stable CO isotopologue, 13C17O, in a protoplanetary disk for the first time. We compare our observations with the existing detections of 12CO, 13CO, C18O and C17O in the HD163296 disk. Radiative transfer modelling using a previously benchmarked model, and assuming interstellar isotopic abundances, significantly underestimates the integrated intensity of the 13C17O J=3-2 line. Reconciliation between the observations and the model requires a global increase in CO gas mass by a factor of 3.5. This is a factor of 2-6 larger than previous gas mass estimates using C18O. We find that C18O emission is optically thick within the CO snow line, while the 13C17O emission is optically thin and is thus a robust tracer of the bulk disk CO gas mass.
Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key to understand the formation of nitrogen bearing species in early solar system analogs. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Using HIFI on the Herschel Space Observatory we detect, for the first time, the ground-state rotational emission of ortho-NH$_3$ in a protoplanetary disk, around TW Hya. We use detailed models of the disks physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explore two radial distributions ( confined to $<$60 au like the millimeter-sized grains) and two vertical distributions (near the midplane where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. We use physical-chemical models to reproduce the fluxes with assuming that water and ammonia are co-spatial. We infer ammonia gas-phase masses of 0.7-11.0 $times$10$^{21}$ g. For water, we infer gas-phase masses of 0.2-16.0 $times$10$^{22}$ g. This corresponds to NH$_3$/H$_2$O abundance ratios of 7%-84%, assuming that water and ammonia are co-located. Only in the most compact and settled adopted configuration is the inferred NH$_3$/H$_2$O consistent with interstellar ices and solar system bodies of $sim$ 5%-10%. Volatile release in the midplane may occur via collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, e.g., through growth of small grains into pebbles or larger.
We present ALMA observations of the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{^{13}CO}~J = 1 - 0$ and $mathrm{C^{18}O}~J = 1 - 0$ line emissions of the protoplanetary disk associated with HD~142527. The $98.5~mathrm{GHz}$ continuum shows a strong azimuthal-asymmetric distribution similar to that of the previously reported $336~mathrm{GHz}$ continuum, with a peak emission in dust concentrated region in the north. The disk is optically thin in both the $98.5~mathrm{GHz}$ dust continuum and the $mathrm{C^{18}O}~J = 1 - 0$ emissions. We derive the distributions of gas and dust surface densities, $Sigma_mathrm{g}$ and $Sigma_mathrm{d}$, and the dust spectral opacity index, $beta$, in the disk from ALMA Band 3 and Band 7 data. In the analyses, we assume the local thermodynamic equilibrium and the disk temperature to be equal to the peak brightness temperature of $mathrm{^{13}CO}~J = 3 - 2$ with a continuum emission. The gas-to-dust ratio, $mathrm{G/D}$, varies azimuthally with a relation $mathrm{G/D} propto Sigma_mathrm{d}^{-0.53}$, and $beta$ is derived to be $approx 1$ and $approx 1.7$ in the northern and southern regions of the disk, respectively. These results are consistent with the accumulation of larger dust grains in a higher pressure region. In addition, our results show that the peak $Sigma_mathrm{d}$ is located ahead of the peak $Sigma_mathrm{g}$. If the latter corresponds to a vortex of high gas pressure, the results indicate that the dust is trapped ahead of the vortex, as predicted by some theoretical studies.
The formation of asteroids, comets and planets occurs in the interior of protoplanetary disks during the early phase of star formation. Consequently, the chemical composition of the disk might shape the properties of the emerging planetary system. In this context, it is crucial to understand whether and what organic molecules are synthesized in the disk. In this Letter, we report the first detection of formic acid (HCOOH) towards the TW Hydrae protoplanetary disk. The observations of the trans-HCOOH 6$_{(1,6)-5(1,5)}$ transition were carried out at 129~GHz with ALMA. We measured a disk-averaged gas-phase t-HCOOH column density of $sim$ (2-4)$times$10$^{12}$~cm$^{-2}$, namely as large as that of methanol. HCOOH is the first organic molecules containing two oxygen atoms detected in a protoplanetary disk, a proof that organic chemistry is very active even though difficult to observe in these objects. Specifically, this simplest acid stands as the basis for synthesis of more complex carboxylic acids used by life on Earth.
124 - Xue-Ning Bai 2014
The gas dynamics of protoplanetary disks (PPDs) is largely controlled by non-ideal magnetohydrodynamic (MHD) effects including Ohmic resistivity, the Hall effect and ambipolar diffusion. Among these the role of the Hall effect is the least explored and most poorly understood. We have included all three non-ideal MHD effects in a self-consistent manner to investigate the role of the Hall effect on PPD gas dynamics using local shearing-box simulations. In this first paper, we focus on the inner region of PPDs, where previous studies excluding the Hall effect have revealed that the inner disk up to ~10 AU is largely laminar, with accretion driven by a magnetocentrifugal wind. We confirm this basic picture and show that the Hall effect introduces modest modifications to the wind solutions, depending on the polarity of the large-scale poloidal magnetic field B_0 threading the disk. When B_0.Omega>0, the horizontal magnetic field is strongly amplified toward the disk interior, leading to a stronger disk wind (by ~50% or less in terms of the wind-driven accretion rate). The enhanced horizontal field also leads to much stronger large-scale Maxwell stress (magnetic braking) that contributes to a considerable fraction of the wind-driven accretion rate. When B_0.Omega<0, the horizontal magnetic field is reduced, leading to a weaker disk wind (by ~20%) and negligible magnetic braking. Moreover, we find that when B_0.Omega>0, the laminar region extends farther to ~15 AU before the magneto-rotational instability sets in, while for B_0.Omega<0, the laminar region extends only to ~3-5 AU for a typical PPD accretion rates. Scaling relations for the wind properties, especially the wind-driven accretion rate, are provided for aligned and anti-aligned field geometries. Issues with the symmetry of the wind solutions and grain abundance are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا