Do you want to publish a course? Click here

Strategies for Searching Video Content with Text Queries or Video Examples

175   0   0.0 ( 0 )
 Added by Shoou-I Yu
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The large number of user-generated videos uploaded on to the Internet everyday has led to many commercial video search engines, which mainly rely on text metadata for search. However, metadata is often lacking for user-generated videos, thus these videos are unsearchable by current search engines. Therefore, content-based video retrieval (CBVR) tackles this metadata-scarcity problem by directly analyzing the visual and audio streams of each video. CBVR encompasses multiple research topics, including low-level feature design, feature fusion, semantic detector training and video search/reranking. We present novel strategies in these topics to enhance CBVR in both accuracy and speed under different query inputs, including pure textual queries and query by video examples. Our proposed strategies have been incorporated into our submission for the TRECVID 2014 Multimedia Event Detection evaluation, where our system outperformed other submissions in both text queries and video example queries, thus demonstrating the effectiveness of our proposed approaches.



rate research

Read More

Existing video indexing and retrieval methods on popular web-based multimedia sharing websites are based on user-provided sparse tagging. This paper proposes a very specific way of searching for video clips, based on the content of the video. We present our work on Content-based Video Indexing and Retrieval using the Correspondence-Latent Dirichlet Allocation (corr-LDA) probabilistic framework. This is a model that provides for auto-annotation of videos in a database with textual descriptors, and brings the added benefit of utilizing the semantic relations between the content of the video and text. We use the concept-level matching provided by corr-LDA to build correspondences between text and multimedia, with the objective of retrieving content with increased accuracy. In our experiments, we employ only the audio components of the individual recordings and compare our results with an SVM-based approach.
137 - B. V. Patel , B. B. Meshram 2012
Content based video retrieval is an approach for facilitating the searching and browsing of large image collections over World Wide Web. In this approach, video analysis is conducted on low level visual properties extracted from video frame. We believed that in order to create an effective video retrieval system, visual perception must be taken into account. We conjectured that a technique which employs multiple features for indexing and retrieval would be more effective in the discrimination and search tasks of videos. In order to validate this claim, content based indexing and retrieval systems were implemented using color histogram, various texture features and other approaches. Videos were stored in Oracle 9i Database and a user study measured correctness of response.
111 - Chao Liu , Heming Sun , Jiro Katto 2021
In this paper, we propose a learned video codec with a residual prediction network (RP-Net) and a feature-aided loop filter (LF-Net). For the RP-Net, we exploit the residual of previous multiple frames to further eliminate the redundancy of the current frame residual. For the LF-Net, the features from residual decoding network and the motion compensation network are used to aid the reconstruction quality. To reduce the complexity, a light ResNet structure is used as the backbone for both RP-Net and LF-Net. Experimental results illustrate that we can save about 10% BD-rate compared with previous learned video compression frameworks. Moreover, we can achieve faster coding speed due to the ResNet backbone. This project is available at https://github.com/chaoliu18/RPLVC.
Video capture is limited by the trade-off between spatial and temporal resolution: when capturing videos of high temporal resolution, the spatial resolution decreases due to bandwidth limitations in the capture system. Achieving both high spatial and temporal resolution is only possible with highly specialized and very expensive hardware, and even then the same basic trade-off remains. The recent introduction of compressive sensing and sparse reconstruction techniques allows for the capture of single-shot high-speed video, by coding the temporal information in a single frame, and then reconstructing the full video sequence from this single coded image and a trained dictionary of image patches. In this paper, we first analyze this approach, and find insights that help improve the quality of the reconstructed videos. We then introduce a novel technique, based on convolutional sparse coding (CSC), and show how it outperforms the state-of-the-art, patch-based approach in terms of flexibility and efficiency, due to the convolutional nature of its filter banks. The key idea for CSC high-speed video acquisition is extending the basic formulation by imposing an additional constraint in the temporal dimension, which enforces sparsity of the first-order derivatives over time.
340 - Zhao Wang , Changyue Ma , Yan Ye 2021
Video compression is a basic requirement for consumer and professional video applications alike. Video coding standards such as H.264/AVC and H.265/HEVC are widely deployed in the market to enable efficient use of bandwidth and storage for many video applications. To reduce the coding artifacts and improve the compression efficiency, neural network based loop filtering of the reconstructed video has been developed in the literature. However, loop filtering is a challenging task due to the variation in video content and sampling densities. In this paper, we propose a on-line scaling based multi-density attention network for loop filtering in video compression. The core of our approach lies in several aspects: (a) parallel multi-resolution convolution streams for extracting multi-density features, (b) single attention branch to learn the sample correlations and generate mask maps, (c) a channel-mutual attention procedure to fuse the data from multiple branches, (d) on-line scaling technique to further optimize the output results of network according to the actual signal. The proposed multi-density attention network learns rich features from multiple sampling densities and performs robustly on video content of different resolutions. Moreover, the online scaling process enhances the signal adaptability of the off-line pre-trained model. Experimental results show that 10.18% bit-rate reduction at the same video quality can be achieved over the latest Versatile Video Coding (VVC) standard. The objective performance of the proposed algorithm outperforms the state-of-the-art methods and the subjective quality improvement is obvious in terms of detail preservation and artifact alleviation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا