Do you want to publish a course? Click here

Content based video retrieval

137   0   0.0 ( 0 )
 Added by Bhavesh Patel
 Publication date 2012
and research's language is English




Ask ChatGPT about the research

Content based video retrieval is an approach for facilitating the searching and browsing of large image collections over World Wide Web. In this approach, video analysis is conducted on low level visual properties extracted from video frame. We believed that in order to create an effective video retrieval system, visual perception must be taken into account. We conjectured that a technique which employs multiple features for indexing and retrieval would be more effective in the discrimination and search tasks of videos. In order to validate this claim, content based indexing and retrieval systems were implemented using color histogram, various texture features and other approaches. Videos were stored in Oracle 9i Database and a user study measured correctness of response.



rate research

Read More

Existing video indexing and retrieval methods on popular web-based multimedia sharing websites are based on user-provided sparse tagging. This paper proposes a very specific way of searching for video clips, based on the content of the video. We present our work on Content-based Video Indexing and Retrieval using the Correspondence-Latent Dirichlet Allocation (corr-LDA) probabilistic framework. This is a model that provides for auto-annotation of videos in a database with textual descriptors, and brings the added benefit of utilizing the semantic relations between the content of the video and text. We use the concept-level matching provided by corr-LDA to build correspondences between text and multimedia, with the objective of retrieving content with increased accuracy. In our experiments, we employ only the audio components of the individual recordings and compare our results with an SVM-based approach.
90 - Jing Yi , Yaochen Zhu , Jiayi Xie 2021
In this paper, we propose a cross-modal variational auto-encoder (CMVAE) for content-based micro-video background music recommendation. CMVAE is a hierarchical Bayesian generative model that matches relevant background music to a micro-video by projecting these two multimodal inputs into a shared low-dimensional latent space, where the alignment of two corresponding embeddings of a matched video-music pair is achieved by cross-generation. Moreover, the multimodal information is fused by the product-of-experts (PoE) principle, where the semantic information in visual and textual modalities of the micro-video are weighted according to their variance estimations such that the modality with a lower noise level is given more weights. Therefore, the micro-video latent variables contain less irrelevant information that results in a more robust model generalization. Furthermore, we establish a large-scale content-based micro-video background music recommendation dataset, TT-150k, composed of approximately 3,000 different background music clips associated to 150,000 micro-videos from different users. Extensive experiments on the established TT-150k dataset demonstrate the effectiveness of the proposed method. A qualitative assessment of CMVAE by visualizing some recommendation results is also included.
Quality assessment plays a key role in creating and comparing video compression algorithms. Despite the development of a large number of new methods for assessing quality, generally accepted and well-known codecs comparisons mainly use the classical methods like PSNR, SSIM and new method VMAF. These methods can be calculated following different rules: they can use different frame-by-frame averaging techniques or different summation of color components. In this paper, a fundamental comparison of vario
First responders are increasingly using social media to identify and reduce crime for well-being and safety of the society. Images shared on social media hurting religious, political, communal and other sentiments of people, often instigate violence and create law & order situations in society. This results in the need for first responders to inspect the spread of such images and users propagating them on social media. In this paper, we present a comparison between different hand-crafted features and a Convolutional Neural Network (CNN) model to retrieve similar images, which outperforms state-of-art hand-crafted features. We propose an Open-Source-Intelligent (OSINT) real-time image search system, robust to retrieve modified images that allows first responders to analyze the current spread of images, sentiments floating and details of users propagating such content. The system also aids officials to save time of manually analyzing the content by reducing the search space on an average by 67%.
Adaptive bitrate (ABR) streaming is the de facto solution for achieving smooth viewing experiences under unstable network conditions. However, most of the existing rate adaptation approaches for ABR are content-agnostic, without considering the semantic information of the video content. Nevertheless, semantic information largely determines the informativeness and interestingness of the video content, and consequently affects the QoE for video streaming. One common case is that the user may expect higher quality for the parts of video content that are more interesting or informative so as to reduce video distortion and information loss, given that the overall bitrate budgets are limited. This creates two main challenges for such a problem: First, how to determine which parts of the video content are more interesting? Second, how to allocate bitrate budgets for different parts of the video content with different significances? To address these challenges, we propose a Content-of-Interest (CoI) based rate adaptation scheme for ABR. We first design a deep learning approach for recognizing the interestingness of the video content, and then design a Deep Q-Network (DQN) approach for rate adaptation by incorporating video interestingness information. The experimental results show that our method can recognize video interestingness precisely, and the bitrate allocation for ABR can be aligned with the interestingness of video content while not compromising the performances on objective QoE metrics.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا