No Arabic abstract
We study the possible breakdown of quantum thermalization in a model of itinerant electrons on a one-dimensional chain without disorder, with both spin and charge degrees of freedom. The eigenstates of this model exhibit peculiar properties in the entanglement entropy, the apparent scaling of which is modified from a volume law to an area law after performing a partial, site-wise measurement on the system. These properties and others suggest that this model realizes a new, non-thermal phase of matter, known as a quantum disentangled liquid (QDL). The putative existence of this phase has striking implications for the foundations of quantum statistical mechanics.
We study inelastic decay of bosonic excitations in a Luttinger liquid. In a model with linear excitation spectrum the decay rate diverges. We show that this difficulty is resolved when the interaction between constituent particles is strong, and the excitation spectrum is nonlinear. Although at low energies the nonlinearity is weak, it regularizes the divergence in the decay rate. We develop a theoretical description of the approach of the system to thermal equilibrium. The typical relaxation rate scales as the fifth power of temperature.
We study thermalization in open quantum systems using the Lindblad formalism. A method that both thermalizes and couples to Lindblad operators only at edges of the system is introduced. Our method leads to a Gibbs state of the system, satisfies fluctuation-dissipation relations, and applies both to integrable and non-integrable systems. Possible applications of the method include the study of systems coupled locally to multiple reservoirs. Our analysis also highlights the limits of applicability of the Lindblad approach to study strongly driven systems.
Many-body localization (MBL) has been widely investigated for both fermions and bosons, it is, however, much less explored for anyons. Here we numerically calculate several physical characteristics related to MBL of a one-dimensional disordered anyon-Hubbard model in both localized and delocalized regions. We figure out a logarithmically slow growth of the half-chain entanglement entropy and an area-law rather than volume-law obedience for the highly excited eigenstates in the MBL phase. The adjacent energy level gap-ratio parameter is calculated and is found to exhibit a Poisson-like probability distribution in the deep MBL phase. By studying a hybridization parameter, we reveal an intriguing effect that the statistics can induce localization-delocalization transition. Several physical quantities, such as the half-chain entanglement, the adjacent energy level gap-ratio parameter, {color{black} the long-time limit of the particle imbalance}, and the critical disorder strength, are shown to be non-monotonically dependent on the anyon statistical angle. Furthermore, a feasible scheme based on the spectroscopy of energy levels is proposed for the experimental observation of these statistically related properties.
Thermalizing quantum systems are conventionally described by statistical mechanics at equilibrium. However, not all systems fall into this category, with many body localization providing a generic mechanism for thermalization to fail in strongly disordered systems. Many-body localized (MBL) systems remain perfect insulators at non-zero temperature, which do not thermalize and therefore cannot be described using statistical mechanics. In this Colloquium we review recent theoretical and experimental advances in studies of MBL systems, focusing on the new perspective provided by entanglement and non-equilibrium experimental probes such as quantum quenches. Theoretically, MBL systems exhibit a new kind of robust integrability: an extensive set of quasi-local integrals of motion emerges, which provides an intuitive explanation of the breakdown of thermalization. A description based on quasi-local integrals of motion is used to predict dynamical properties of MBL systems, such as the spreading of quantum entanglement, the behavior of local observables, and the response to external dissipative processes. Furthermore, MBL systems can exhibit eigenstate transitions and quantum orders forbidden in thermodynamic equilibrium. We outline the current theoretical understanding of the quantum-to-classical transition between many-body localized and ergodic phases, and anomalous transport in the vicinity of that transition. Experimentally, synthetic quantum systems, which are well-isolated from an external thermal reservoir, provide natural platforms for realizing the MBL phase. We review recent experiments with ultracold atoms, trapped ions, superconducting qubits, and quantum materials, in which different signatures of many-body localization have been observed. We conclude by listing outstanding challenges and promising future research directions.
We analyze the physics of optimal protocols to prepare a target state with high fidelity in a symmetrically coupled two-qubit system. By varying the protocol duration, we find a discontinuous phase transition, which is characterized by a spontaneous breaking of a $mathbb{Z}_2$ symmetry in the functional form of the optimal protocol, and occurs below the quantum speed limit. We study in detail this phase and demonstrate that even though high-fidelity protocols come degenerate with respect to their fidelity, they lead to final states of different entanglement entropy shared between the qubits. Consequently, while globally both optimal protocols are equally far away from the target state, one is locally closer than the other. An approximate variational mean-field theory which captures the physics of the different phases is developed.