Do you want to publish a course? Click here

The iridium double perovskite Sr2YIrO6 revisited: A combined structural and specific heat study

91   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, the iridate double perovskite Sr$_2$YIrO$_6$ has attracted considerable attention due to the report of unexpected magnetism in this Ir$^{5+}$ (5d$^4$) material, in which according to the J$_{eff}$ model, a non-magnetic ground state is expected. However, in recent works on polycrystalline samples of the series Ba$_{2-x}$Sr$_x$YIrO$_6$ no indication of magnetic transitions have been found. We present a structural, magnetic and thermodynamic characterization of Sr$_2$YIrO$_6$ single crystals, with emphasis on the temperature and magnetic field dependence of the specific heat. Here, we demonstrate the clue role of single crystal X-ray diffraction on the structural characterization of the Sr$_2$YIrO$_6$ double perovskite crystals by reporting the detection of a $sqrt{2}a times sqrt{2}a times 1c$ supercell, where $a$, $b$ and $c$ are the unit cell dimensions of the reported monoclinic subcell. In agreement with the expected non-magnetic ground state of Ir$^{5+}$ (5d$^4$) in Sr$_2$YIrO$_6$, no magnetic transition is observed down to 430~mK. Moreover, our results suggest that the low temperature anomaly observed in the specific heat is not related to the onset of long-range magnetic order. Instead, it is identified as a Schottky anomaly caused by paramagnetic impurities present in the sample, of the order of $n sim 0.5(2)$ %. These impurities lead to non-negligible spin correlations, which nonetheless, are not associated with long-range magnetic ordering.



rate research

Read More

The structural behaviour of CsCdF3 under pressure is investigated by means of theory and experiment. High-pressure powder x-ray diffraction experiments were performed up to a maximum pressure of 60 GPa using synchrotron radiation. The cubic $Pmbar{3}m$ crystal symmetry persists throughout this pressure range. Theoretical calculations were carried out using the full-potential linear muffin-tin orbital method within the local density approximation and the generalized gradient approximation for exchange and correlation effects. The calculated ground state properties -- the equilibrium lattice constant, bulk modulus and elastic constants -- are in good agreement with experimental results. Under ambient conditions, CsCdF3 is an indirect gap insulator with the gap increasing under pressure.
180 - G. Cao , T. F. Qi , L. Li 2013
We synthesize and study single crystals of a new double-perovskite Sr2YIrO6. Despite two strongly unfavorable conditions for magnetic order, namely, pentavalent Ir5+(5d4) ions which are anticipated to have Jeff=0 singlet ground states in the strong spin-orbit coupling (SOC) limit, and geometric frustration in a face centered cubic structure formed by the Ir5+ ions, we observe this iridate to undergo a novel magnetic transition at temperatures below 1.3 K. We provide compelling experimental and theoretical evidence that the origin of magnetism is in an unusual interplay between strong non-cubic crystal fields and intermediate-strength SOC. Sr2YIrO6 provides a rare example of the failed dominance of SOC in the iridates.
Specific heat measurements were used to study the magnetic phase transition in Ga1-xMnxAs. Two different types of Ga1-xMnxAs samples have been investigated. The sample with a Mn concentration of 1.6% shows insulating behavior, and the sample with a Mn concentration of 2.6% is metallic. The temperature dependence of the specific heat for both samples reveals a pronounced lambda-shaped peak near the Curie temperature, which indicates a second-order phase transition in these samples. The critical behavior of the specific heat for Ga1-xMnxAs samples is consistent with the mean-field behavior with Gaussian fluctuations of the magnetization in the close vicinity of TC.
158 - M. Fehr , A. Schnegg , B. Rech 2011
Multifrequency pulsed electron paramagnetic resonance (EPR) spectroscopy using S-, X-, Q- and W-Band frequencies (3.6, 9.7, 34, and 94 GHz, respectively) was employed to study paramagnetic coordination defects in undoped hydrogenated amorphous silicon (a-Si:H). The improved spectral resolution at high magnetic field reveals a rhombic splitting of the g-tensor with the following principal values: g_x=2.0079, g_y=2.0061 and g_z=2.0034 and shows pronounced g-strain, i.e., the principal values are widely distributed. The multifrequency approach furthermore yields precise ^{29}Si hyperfine data. Density functional theory (DFT) calculations on 26 computer-generated a-Si:H dangling-bond models yielded g-values close to the experimental data but deviating hyperfine interaction values. We show that paramagnetic coordination defects in a-Si:H are more delocalized than computer-generated dangling-bond defects and discuss models to explain this discrepancy.
257 - R. Shaltaf , X. Gonze , M. Cardona 2008
We extend recent textit{ab initio} calculations of the electronic band structure and the phonon dispersion relations of rhombohedral GeTe to calculations of the density of phonon states and the temperature dependent specific heat. The results are compared with measurements of the specific heat. It is discovered that the specific heat depends on hole concentration, not only in the very low temperature region (Sommerfeld term) but also at the maximum of $C_p/T^3$ (around 16 K). To explain this phenomenon, we have performed textit{ab initio} lattice dynamical calculations for GeTe rendered metallic through the presence of a heavy hole concentration ($p$ $sim$ 2$times$ 10$^{21}$ cm$^{-3}$). They account for the increase observed in the maximum of $C_p/T^3$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا