No Arabic abstract
We synthesize and study single crystals of a new double-perovskite Sr2YIrO6. Despite two strongly unfavorable conditions for magnetic order, namely, pentavalent Ir5+(5d4) ions which are anticipated to have Jeff=0 singlet ground states in the strong spin-orbit coupling (SOC) limit, and geometric frustration in a face centered cubic structure formed by the Ir5+ ions, we observe this iridate to undergo a novel magnetic transition at temperatures below 1.3 K. We provide compelling experimental and theoretical evidence that the origin of magnetism is in an unusual interplay between strong non-cubic crystal fields and intermediate-strength SOC. Sr2YIrO6 provides a rare example of the failed dominance of SOC in the iridates.
Materials with a 5d4 electronic configuration are generally considered to have a nonmagnetic ground state (J=0). Interestingly, Sr2YIrO6 (Ir5+ having 5d4 electronic configuration) was recently reported to exhibit long-range magnetic order at low temperature and the distorted IrO6 octahedra were discussed to cause the magnetism in this material. Hence, a comparison of structurally distorted Sr2YIrO6 with cubic Ba2YIrO6 may shed light on the source of magnetism in such Ir5+ materials with 5d4 configuration. Besides, Ir5+ materials having 5d4 are also interesting in the context of recently predicted excitonic types of magnetism. Here we report a single-crystal-based analysis of the structural, magnetic, and thermodynamic properties of Ba2YIrO6. We observe that in Ba2YIrO6 for temperatures down to 0.4 K, long-range magnetic order is absent but at the same time correlated magnetic moments are present. We show that these moments are absent in fully relativistic ab initio band-structure calculations; hence, their origin is presently unclear.
Ba2YIrO6, a Mott insulator, with four valence electrons in Ir5+ d-shell (5d4) is supposed to be non-magnetic, with Jeff = 0, within the atomic physics picture. However, recent suggestions of non-zero magnetism have raised some fundamental questions about its origin. Focussing on the phonon dynamics, probed via Raman scattering, as a function of temperature and different incident photon energies, as an external perturbation. Our studies reveal strong renormalization of the phonon self-energy parameters and integrated intensity for first-order modes, especially redshift of the few first-order modes with decreasing temperature and anomalous softening of modes associated with IrO6 octahedra, as well as high energy Raman bands attributed to the strong anharmonic phonons and coupling with orbital excitations. The distinct renormalization of second-order Raman bands with respect to their first-order counterpart suggest that higher energy Raman bands have significant contribution from orbital excitations. Our observation indicates that strong anharmonic phonons coupled with electronic/orbital degrees of freedom provides a knob for tuning the conventional electronic levels for 5d-orbitals, and this may give rise to non-zero magnetism as postulated in recent theoretical calculations with rich magnetic phases.
We report on our investigation on the magnetism of the iridate double perovskite Sr$_2$CoIrO$_6$, a nominally Ir$^{5+}$ Van Vleck $J_{eff}=0$ system. Using x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy at the Ir-$L_{2,3}$ edges, we found a nearly zero orbital contribution to the magnetic moment and thus an apparent breakdown of the $J_{eff}=0$ ground state. By carrying out also XAS and XMCD experiments at the Co-$L_{2,3}$ edges and by performing detailed full atomic multiplet calculations to simulate all spectra, we discovered that the compound consists of about 90% Ir$^{5+}$ ($J_{eff}=0$) and Co$^{3+}$ ($S=2$) and 10% Ir$^{6+}$ ($S=3/2$) and Co$^{2+}$ ($S=3/2$). The magnetic signal of this minority Ir$^{6+}$ component is almost equally strong as that of the main Ir$^{5+}$ component. We infer that there is a competition between the Ir$^{5+}$-Co$^{3+}$ and the Ir$^{6+}$-Co$^{2+}$ configurations in this stoichiometric compound.
The synthesis and characterization of the previously unknown material LaCaScIrO$_6$ is reported. LaCaScIrO$_6$ presents a new example of the rare case of a double perovskite with the strongly spin-orbit coupled 5textit{d}-ion Ir$^{4+}$ as its only magnetic species, forming a monoclinically distorted version of the frustrated fcc lattice. Magnetization measurements show a weak anomaly at 8~K. The Curie-Weiss temperature Theta$_{CW}$ and effective magnetic moment mu$_{eff}$ of LaCaScIrO$_6$ are in close proximity to the related compound La$_2$MgIrO$_6$ but differ from La$_2$ZnIrO$_6$. This suggests that the nature of the non-magnetic textit{B}-ion, namely its textit{d}-orbital filling has a strong influence on the magnetic properties. The textit{d}$^{0}$-ions Sc$^{3+}$ and Mg$^{2+}$ allow a different kind of exchange interactions within the Ir-sublattice than the textit{d}$^{10}$-ion Zn$^{2+}$. In addition, ac-susceptibility data does not show signs of a spin-glass ground state. The nature of the magnetism in LaCaScIrO$_6$ has been further elucidated using muon spin relaxation measurements. The zero-field measurements reveal the absence of well defined oscillations down to 1.6,K, while temperature dependent $mu$SR studies show an anomaly at 8,K. Overall, our results suggest the presence of two different magnetic environments or domains in LaCaScIrO$_6$, which is likely related to its structural features.
The ability to tune exchange (magnetic) interactions between 3d transition metals in perovskite structures has proven to be a powerful route to discovery of novel properties. Here we demonstrate that the introduction of 3d-5d exchange pathways in double perovskites enables additional tunability, a result of the large spatial extent of 5d wave functions. Using x-ray probes of magnetism and structure at high pressure, we show that compression of Sr2FeOsO6 drives an unexpected continuous change in the sign of Fe-Os exchange interactions and a transition from antiferromagnetic to ferrimagnetic order. We analyze the relevant electron-electron interactions, shedding light into fundamental differences with the more thoroughly studied 3d-3d systems.