No Arabic abstract
Strong electron correlations lie at the origin of transformative phenomena such as colossal magneto-resistance and high-temperature superconductivity. Already near room temperature, doped copper oxide materials display remarkable features such as a pseudo-gap and a strange metal phase with unusual transport properties. The essence of this physics is believed to be captured by the Fermi-Hubbard model of repulsively interacting, itinerant fermions on a lattice. Here we report on the site-resolved observation of charge and spin correlations in the two-dimensional (2D) Fermi-Hubbard model realized with ultracold atoms. Antiferromagnetic spin correlations are maximal at half-filling and weaken monotonically upon doping. Correlations between singly charged sites are negative at large doping, revealing the Pauli and correlation holetextemdash a suppressed probability of finding two fermions near each other. However, as the doping is reduced below a critical value, correlations between such local magnetic moments become positive, signaling strong bunching of doublons and holes. Excellent agreement with numerical linked-cluster expansion (NLCE) and determinantal quantum Monte Carlo (DQMC) calculations is found. Positive non-local moment correlations directly imply potential energy fluctuations due to doublon-hole pairs, which should play an important role for transport in the Fermi-Hubbard model.
Utilizing the Fermi gas microscope, recently the MIT group has measured the spin transport of the Fermi Hubbard model starting from a spin-density-wave state, and the Princeton group has measured the charge transport of the Fermi Hubbard model starting from a charge-density-wave state. Motivated by these two experiments, we prove a theorem that shows under certain conditions, the spin and charge transports can be equivalent to each other. The proof makes use of the particle-hole transformation of the Fermi Hubbard model and a recently discovered symmetry protected dynamical symmetry. Our results can be directly verified in future cold atom experiment with the Fermi gas microscope.
We use quantum kinetic theory to calculate the thermoelectric transport properties of the 2D single band Fermi-Hubbard model in the weak coupling limit. For generic filling, we find that the high-temperature limiting behaviors of the electrical ($sim T$) and thermal ($sim T^2$) resistivities persist down to temperatures of order the hopping matrix element $Tsim t$, almost an order of magnitude below the bandwidth. At half filling, perfect nesting leads to anomalous low temperature scattering and nearly $T$-linear electrical resistivity at all temperatures. We hypothesize that the $T$-linear resistivity observed in recent cold atom experiments is continuously connected to this weak coupling physics and suggest avenues for experimental verification. We find a number of other novel thermoelectric results, such as a low-temperature Wiedemann-Franz law with Lorenz coefficient $5pi^2/36$.
The realization of antiferromagnetic (AF) correlations in ultracold fermionic atoms on an optical lattice is a significant achievement. Experiments have been carried out in one, two, and three dimensions, and have also studied anisotropic configurations with stronger tunneling in some lattice directions. Such anisotropy is relevant to the physics of cuprate superconductors and other strongly correlated materials. Moreover, this anisotropy might be harnessed to enhance AF order. Here we numerically investigate, using Determinant Quantum Monte Carlo, a simple realization of anisotropy in the 3D Hubbard model in which the tunneling between planes, $t_perp$, is unequal to the intraplane tunneling $t$. This model interpolates between the three-dimensional isotropic ($t_perp = t$) and two-dimensional ($t_perp =0$) systems. We show that at fixed interaction strength to tunneling ratio ($U/t$), anisotropy can enhance the magnetic structure factor relative to both 2D and 3D results. However, this enhancement occurs at interaction strengths below those for which the Neel temperature $T_{rm Nacute{e}el}$ is largest, in such a way that the structure factor cannot be made to exceed its value in isotropic 3D systems at the optimal $U/t$. We characterize the 2D-3D crossover in terms of the magnetic structure factor, real space spin correlations, number of doubly-occupied sites, and thermodynamic observables. An interesting implication of our results stems from the entropys dependence on anisotropy. As the system evolves from 3D to 2D, the entropy at a fixed temperature increases. Correspondingly, at fixed entropy, the temperature will decrease going from 3D to 2D. This suggests a cooling protocol in which the dimensionality is adiabatically changed from 3D to 2D.
The Fermi-Hubbard model is one of the key models of condensed matter physics, which holds a potential for explaining the mystery of high-temperature superconductivity. Recent progress in ultracold atoms in optical lattices has paved the way to studying the models phase diagram using the tools of quantum simulation, which emerged as a promising alternative to the numerical calculations plagued by the infamous sign problem. However, the temperatures achieved using elaborate laser cooling protocols so far have been too high to show the appearance of antiferromagnetic and superconducting quantum phases directly. In this work, we demonstrate that using the machinery of dissipative quantum state engineering, one can efficiently prepare antiferromagnetic order in present-day experiments with ultracold fermions. The core of the approach is to add incoherent laser scattering in such a way that the antiferromagnetic state emerges as the dark state of the driven-dissipative dynamics. In order to elucidate the development of the antiferromagnetic order we employ two complementary techniques: Monte Carlo wave function simulations for small systems and a recently proposed variational method for open quantum systems, operating in the thermodynamic limit. The controlled dissipation channels described in this work are straightforward to add to already existing experimental setups.
Expansion dynamics of interacting fermions in a lattice are simulated within the one-dimensional (1D) Hubbard model, using the essentially exact time-evolving block decimation (TEBD) method. In particular, the expansion of an initial band-insulator state is considered. We analyze the simulation results based on the dynamics of a two-site two-particle system, the so-called Hubbard dimer. Our findings describe essential features of a recent experiment on the expansion of a Fermi gas in a two-dimensional lattice. We show that the Hubbard-dimer dynamics, combined with a two-fluid model for the paired and non-paired components of the gas, gives an efficient description of the full dynamics. This should be useful for describing dynamical phenomena of strongly interacting Fermions in a lattice in general.