Do you want to publish a course? Click here

Wake turbulence observed behind an upstream extra particle in a complex (dusty) plasma

203   0   0.0 ( 0 )
 Added by Mierk Schwabe
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

An interaction of upstream extra particles with a monolayer highly-ordered complex plasma is studied. A principally new abnormal turbulent wake formed behind the supersonic upstream particle is discovered. An anomalous type of the turbulence wake clearly manifests in anomalously low thermal diffusivity and two orders of magnitude larger particle kinetic temperature compared to that of the normal wake (Mach cone) observed by Du et al [Europhys. Lett. 99, 55001 (2012)].



rate research

Read More

Particle dynamics are investigated in plasma turbulence, using self-consistent kinetic simulations, in two dimensions. In steady state, the trajectories of single protons and proton-pairs are studied, at different values of plasma beta (ratio between kinetic and magnetic pressure). For single-particle displacements, results are consistent with fluids and magnetic field line dynamics, where particles undergo normal diffusion for very long times, with higher beta being more diffusive. In an intermediate time range, with separations lying in the inertial range, particles experience an explosive dispersion in time, consistent with the Richardson prediction. These results, obtained for the first time with a self-consistent kinetic model, are relevant for astrophysical and laboratory plasmas, where turbulence is crucial for heating, mixing and acceleration processes.
Experiments to explore stability conditions and topology of a dense microparticle cloud supported against gravity by a gas flow were carried out. By using a nozzle shaped glass insert within the glass tube of a dc discharge plasma chamber a weakly ionized gas flow through a de Laval nozzle was produced. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.43 {mu}m. The capturing and stable global confining of the particles behind the nozzle in the plasma were demonstrated. The particles inside the cloud behaved as a single convection cell inhomogeneously structured along the nozzle axis in a tube-like manner. The pulsed acceleration localized in the very head of the cloud mediated by collective plasma-particle interactions and the resulting wave pattern were studied in detail.
Using particle-in-cell simulations of relativistic laser plasma wakes in the presence of an external magnetic field, we demonstrate that there exists a parameter window where the dynamics of the magnetized wake channel are largely independent of the laser wavelength $lambda_{rm las}$. One condition for this manifestation of limited similarity is that the electron density $n_{rm e}$ is highly subcritical, so that the plasma does not affect the laser. The freedom to choose a convenient laser wavelength can be useful in experiments and simulations. In simulations, an up-scaled wavelength (and, thus, a coarser mesh and larger time steps) reduces the computational effort, while limited similarity ensures that the overall structure and evolutionary phases of the wake channel are preserved. In our demonstrative example, we begin with a terrawatt$cdot$picosecond pulse from a ${rm CO}_2$ laser with $lambda_{rm las} = 10,mu{rm m}$, whose field reaches a relativistic amplitude at the center of a sub-millimeter-sized focal spot. The laser is shot into a sparse deuterium gas ($n_{rm e} sim 10^{13},{rm cm}^{-3}$) in the presence of a tesla-scale magnetic field. Limited similarity is demonstrated in 2D for $4,mu{rm m} leq lambda_{rm las} leq 40,mu{rm m}$ and is expected to extend to shorter wavelengths. Assuming that this limited similarity also holds in 3D, increasing the wavelength to $40,mu{rm m}$ enables us to simulate the after-glow dynamics of the wake channel all the way into the nanosecond regime.
The properties of electrostatic transverse shear waves propagating in a strongly coupled dusty plasma with an equilibrium density gradient are examined using the generalized hydrodynamic equation. In the usual kinetic limit, the resulting equation has similarity to zero energy Schrodingers equation. This has helped in obtaining some exact eigenmode solutions in both cartesian and cylindrical geometries for certain nontrivial density profiles. The corresponding velocity profiles and the discrete eigenfrequencies are obtained for several interesting situations and their physics discussed.
The influence of a supersonic projectile on a three-dimensional complex plasma is studied. Micron sized particles in a low-temperature plasma formed a large undisturbed system in the new Zyflex chamber during microgravity conditions. A supersonic probe particle excited a Mach cone with Mach number M $approx$ 1.5 - 2 and double Mach cone structure in the large weakly damped particle cloud. The speed of sound is measured with different methods and particle charge estimations are compared to calculations from standard theories. The high image resolution enables the study of Mach cones in microgravity on the single particle level of a three-dimensional complex plasma and gives insight to the dynamics. A heating of the microparticles is discovered behind the supersonic projectile but not in the flanks of the Mach cone.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا