Do you want to publish a course? Click here

Shear Waves in an inhomogeneous strongly coupled dusty plasma

143   0   0.0 ( 0 )
 Added by Debabrata Banerjee
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The properties of electrostatic transverse shear waves propagating in a strongly coupled dusty plasma with an equilibrium density gradient are examined using the generalized hydrodynamic equation. In the usual kinetic limit, the resulting equation has similarity to zero energy Schrodingers equation. This has helped in obtaining some exact eigenmode solutions in both cartesian and cylindrical geometries for certain nontrivial density profiles. The corresponding velocity profiles and the discrete eigenfrequencies are obtained for several interesting situations and their physics discussed.



rate research

Read More

The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1 < Gamma << Gamma_c) where Gamma is the Coulomb coupling parameter and Gamma_c is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results.
Linear stability analysis of strongly coupled incompressible dusty plasma in presence of shear flow has been carried out using Generalized Hydrodynamical(GH) model. With the proper Galilean invariant GH model, a nonlocal eigenvalue analysis has been done using different velocity profiles. It is shown that the effect of elasticity enhances the growth rate of shear flow driven Kelvin- Helmholtz (KH) instability. The interplay between viscosity and elasticity not only enhances the growth rate but the spatial domain of the instability is also widened. The growth rate in various parameter space and the corresponding eigen functions are presented.
An experimental investigation of the propagation characteristics of shock waves in an inhomogeneous dusty plasma is carried out in the Dusty Plasma Experimental (DPEx) device. A homogeneous dusty plasma, made up of poly-dispersive kaolin particles, is initially formed in a DC glow discharge Argon plasma by maintaining a dynamic equilibrium of the pumping speed and the gas feeding rate. Later, an equilibrium density inhomogeneity in the dust fluid is created by introducing an imbalance in the original dynamic equilibrium. Non-linear wave structures are then excited in this inhomogeneous dusty plasma by a sudden compression in the dust fluid. These structures are identified as shock waves and their amplitude and width profiles are measured spatially. The amplitude of a shock structure is seen to increase whereas the width broadens as it propagates down a decreasing dust density profile. A modified-KdV-Burger equation is derived and used to provide a theoretical explanation of the results including the power law scaling of the changes in the amplitude and width as a function of the background density.
A generalized hydrodynamical model has been used to study low frequency modes in a strongly coupled, cold, magnetized dusty plasma. Such plasmas exhibit elastic properties due to strong correlations among dust particles and the tensile stresses imparted by the magnetic field. It has been shown that longitudinal compressional Alfven modes and elasticity modified transverse shear mode exist in such a medium. The features of these collective modes are established and discussed.
We address an experimental observation of shear flow of micron sized dust particles in a strongly coupled complex plasma in presence of a homogeneous magnetic field. Two concentric Aluminum rings of different size are placed on the lower electrode of a radio frequency (rf) parallel plate discharge. The modified local sheath electric field is pointing outward/inward close to the inner/outher ring, respectively. The microparticles, confined by the rings and subject to an ion wind that driven by the local sheath electric field and deflected by an externally applied magnetic field, start flowing in azimuthal direction. Depending upon the rf amplitudes on the electrodes, the dust layers show rotation in opposite direction at the edges of the ring-shaped cloud resulting a strong shear in its center. MD simulations shows a good agreement with the experimental results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا