Do you want to publish a course? Click here

Multi-resource defensive strategies for patrolling games with alarm systems

74   0   0.0 ( 0 )
 Added by Giuseppe De Nittis
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Security Games employ game theoretical tools to derive resource allocation strategies in security domains. Recent works considered the presence of alarm systems, even suffering various forms of uncertainty, and showed that disregarding alarm signals may lead to arbitrarily bad strategies. The central problem with an alarm system, unexplored in other Security Games, is finding the best strategy to respond to alarm signals for each mobile defensive resource. The literature provides results for the basic single-resource case, showing that even in that case the problem is computationally hard. In this paper, we focus on the challenging problem of designing algorithms scaling with multiple resources. First, we focus on finding the minimum number of resources assuring non-null protection to every target. Then, we deal with the computation of multi-resource strategies with different degrees of coordination among resources. For each considered problem, we provide a computational analysis and propose algorithmic methods.



rate research

Read More

When securing complex infrastructures or large environments, constant surveillance of every area is not affordable. To cope with this issue, a common countermeasure is the usage of cheap but wide-ranged sensors, able to detect suspicious events that occur in large areas, supporting patrollers to improve the effectiveness of their strategies. However, such sensors are commonly affected by uncertainty. In the present paper, we focus on spatially uncertain alarm signals. That is, the alarm system is able to detect an attack but it is uncertain on the exact position where the attack is taking place. This is common when the area to be secured is wide such as in border patrolling and fair site surveillance. We propose, to the best of our knowledge, the first Patrolling Security Game model where a Defender is supported by a spatially uncertain alarm system which non-deterministically generates signals once a target is under attack. We show that finding the optimal strategy in arbitrary graphs is APX-hard even in zero-sum games and we provide two (exponential time) exact algorithms and two (polynomial time) approximation algorithms. Furthermore, we analyse what happens in environments with special topologies, showing that in linear and cycle graphs the optimal patrolling strategy can be found in polynomial time, de facto allowing our algorithms to be used in real-life scenarios, while in trees the problem is NP-hard. Finally, we show that without false positives and missed detections, the best patrolling strategy reduces to stay in a place, wait for a signal, and respond to it at best. This strategy is optimal even with non-negligible missed detection rates, which, unfortunately, affect every commercial alarm system. We evaluate our methods in simulation, assessing both quantitative and qualitative aspects.
We focus on adversarial patrolling games on arbitrary graphs, where the Defender can control a mobile resource, the targets are alarmed by an alarm system, and the Attacker can observe the actions of the mobile resource of the Defender and perform different attacks exploiting multiple resources. This scenario can be modeled as a zero-sum extensive-form game in which each player can play multiple times. The game tree is exponentially large both in the size of the graph and in the number of attacking resources. We show that when the number of the Attackers resources is free, the problem of computing the equilibrium path is NP-hard, while when the number of resources is fixed, the equilibrium path can be computed in poly-time. We provide a dynamic-programming algorithm that, given the number of the Attackers resources, computes the equilibrium path requiring poly-time in the size of the graph and exponential time in the number of the resources. Furthermore, since in real-world scenarios it is implausible that the Defender knows the number of attacking resources, we study the robustness of the Defenders strategy when she makes a wrong guess about that number. We show that even the error of just a single resource can lead to an arbitrary inefficiency, when the inefficiency is defined as the ratio of the Defenders utilities obtained with a wrong guess and a correct guess. However, a more suitable definition of inefficiency is given by the difference of the Defenders utilities: this way, we observe that the higher the error in the estimation, the higher the loss for the Defender. Then, we investigate the performance of online algorithms when no information about the Attackers resources is available. Finally, we resort to randomized online algorithms showing that we can obtain a competitive factor that is twice better than the one that can be achieved by any deterministic online algorithm.
In this paper we introduce a class of Markov decision processes that arise as a natural model for many renewable resource allocation problems. Upon extending results from the inventory control literature, we prove that they admit a closed form solution and we show how to exploit this structure to speed up its computation. We consider the application of the proposed framework to several problems arising in very different domains, and as part of the ongoing effort in the emerging field of Computational Sustainability we discuss in detail its application to the Northern Pacific Halibut marine fishery. Our approach is applied to a model based on real world data, obtaining a policy with a guaranteed lower bound on the utility function that is structurally very different from the one currently employed.
Bid optimization for online advertising from single advertisers perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertisers objective and global profit have been significantly improved compared to state-of-art methods.
In this contribution, the performance of a multi-user system is analyzed in the context of frequency selective fading channels. Using game theoretic tools, a useful framework is provided in order to determine the optimal power allocation when users know only their own channel (while perfect channel state information is assumed at the base station). We consider the realistic case of frequency selective channels for uplink CDMA. This scenario illustrates the case of decentralized schemes, where limited information on the network is available at the terminal. Various receivers are considered, namely the Matched filter, the MMSE filter and the optimum filter. The goal of this paper is to derive simple expressions for the non-cooperative Nash equilibrium as the number of mobiles becomes large and the spreading length increases. To that end two asymptotic methodologies are combined. The first is asymptotic random matrix theory which allows us to obtain explicit expressions of the impact of all other mobiles on any given tagged mobile. The second is the theory of non-atomic games which computes good approximations of the Nash equilibrium as the number of mobiles grows.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا