No Arabic abstract
We present a new transit timing catalog of 2599 Kepler Objects of Interest (=KOIs), using the PDC-MAP long-cadence light curves that include the full seventeen quarters of the mission (ftp://wise- ftp.tau.ac.il/pub/tauttv/TTV/ver_112). The goal is to produce an easy-to-use catalog that can stimulate further analyses of interesting systems. For 779 KOIs with high enough SNRs, we derived the timing, duration and depth of 69,914 transits. For 1820 KOIs with lower SNR, we derived only the timing of 225,273 transits. After removal of outlier timings, we derived various statistics for each KOI that were used to indicate significant variations. Including systems found by previous works, we have detected 260 KOIs which showed significant TTVs with long-term variations (>100 day), and another fourteen KOIs with periodic modulations shorter than 100 day and small amplitudes. For five of those, the periodicity is probably due to the crossing of rotating stellar spots by the transiting planets.
Following Ford et al. (2011, 2012) and Steffen et al. (2012) we derived the transit timing of 1960 Kepler KOIs using the pre-search data conditioning (PDC) light curves of the first twelve quarters of the Kepler data. For 721 KOIs with large enough SNRs, we obtained also the duration and depth of each transit. The results are presented as a catalog for the community to use. We derived a few statistics of our results that could be used to indicate significant variations. Including systems found by previous works, we have found 130 KOIs that showed highly significant TTVs, and 13 that had short-period TTV modulations with small amplitudes. We consider two effects that could cause apparent periodic TTV - the finite sampling of the observations and the interference with the stellar activity, stellar spots in particular. We briefly discuss some statistical aspects of our detected TTVs. We show that the TTV period is correlated with the orbital period of the planet and with the TTV amplitude.
Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results an updated TTV analysis for 1481 planet candidates (Borucki et al. 2011; Batalha et al. 2012) based on transit times measured during the first sixteen months of Kepler observations. We present 39 strong TTV candidates based on long-term trends (2.8% of suitable data sets). We present another 136 weaker TTV candidates (9.8% of suitable data sets) based on excess scatter of TTV measurements about a linear ephemeris. We anticipate that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We find that the occurrence rate of planet candidates that show TTVs is significantly increased (~68%) for planet candidates transiting stars with multiple transiting planet candidate when compared to planet candidates transiting stars with a single transiting planet candidate.
The architectures of multiple planet systems can provide valuable constraints on models of planet formation, including orbital migration, and excitation of orbital eccentricities and inclinations. NASAs Kepler mission has identified 1235 transiting planet candidates (Borcuki et al 2011). The method of transit timing variations (TTVs) has already confirmed 7 planets in two planetary systems (Holman et al. 2010; Lissauer et al. 2011a). We perform a transit timing analysis of the Kepler planet candidates. We find that at least ~12% of planet candidates currently suitable for TTV analysis show evidence suggestive of TTVs, representing at least ~65 TTV candidates. In all cases, the time span of observations must increase for TTVs to provide strong constraints on planet masses and/or orbits, as expected based on n-body integrations of multiple transiting planet candidate systems (assuming circular and coplanar orbits). We find that the fraction of planet candidates showing TTVs in this data set does not vary significantly with the number of transiting planet candidates per star, suggesting significant mutual inclinations and that many stars with a single transiting planet should host additional non-transiting planets. We anticipate that Kepler could confirm (or reject) at least ~12 systems with multiple transiting planet candidates via TTVs. Thus, TTVs will provide a powerful tool for confirming transiting planets and characterizing the orbital dynamics of low-mass planets. If Kepler observations were extended to at least six years, then TTVs would provide much more precise constraints on the dynamics of systems with multiple transiting planets and would become sensitive to planets with orbital periods extending into the habitable zone of solar-type stars.
The Kepler Mission seeks to detect Earth-size planets transiting solar-like stars in its ~115 deg^2 field of view over the course of its 3.5 year primary mission by monitoring the brightness of each of ~156,000 Long Cadence stellar targets with a time resolution of 29.4 minutes. We discuss the photometric precision achieved on timescales relevant to transit detection for data obtained in the 33.5-day long Quarter 1 (Q1) observations that ended 2009 June 15. The lower envelope of the photometric precision obtained at various timescales is consistent with expected random noise sources, indicating that Kepler has the capability to fulfill its mission. The Kepler light curves exhibit high precision over a large dynamic range, which will surely permit their use for a large variety of investigations in addition to finding and characterizing planets. We discuss the temporal characteristics of both the raw flux time series and the systematic error-corrected flux time series produced by the Kepler Science Pipeline, and give examples illustrating Keplers large dynamic range and the variety of light curves obtained from the Q1 observations.
We analyze the deviations of transit times from a linear ephemeris for the Kepler Objects of Interest (KOI) through Quarter six (Q6) of science data. We conduct two statistical tests for all KOIs and a related statistical test for all pairs of KOIs in multi-transiting systems. These tests identify several systems which show potentially interesting transit timing variations (TTVs). Strong TTV systems have been valuable for the confirmation of planets and their mass measurements. Many of the systems identified in this study should prove fruitful for detailed TTV studies.