Do you want to publish a course? Click here

Transit Timing Observations from Kepler. VIII Catalog of Transit Timing Measurements of the First Twelve Quarters

187   0   0.0 ( 0 )
 Added by Tsevi Mazeh
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Following Ford et al. (2011, 2012) and Steffen et al. (2012) we derived the transit timing of 1960 Kepler KOIs using the pre-search data conditioning (PDC) light curves of the first twelve quarters of the Kepler data. For 721 KOIs with large enough SNRs, we obtained also the duration and depth of each transit. The results are presented as a catalog for the community to use. We derived a few statistics of our results that could be used to indicate significant variations. Including systems found by previous works, we have found 130 KOIs that showed highly significant TTVs, and 13 that had short-period TTV modulations with small amplitudes. We consider two effects that could cause apparent periodic TTV - the finite sampling of the observations and the interference with the stellar activity, stellar spots in particular. We briefly discuss some statistical aspects of our detected TTVs. We show that the TTV period is correlated with the orbital period of the planet and with the TTV amplitude.



rate research

Read More

Transit timing variations provide a powerful tool for confirming and characterizing transiting planets, as well as detecting non-transiting planets. We report the results an updated TTV analysis for 1481 planet candidates (Borucki et al. 2011; Batalha et al. 2012) based on transit times measured during the first sixteen months of Kepler observations. We present 39 strong TTV candidates based on long-term trends (2.8% of suitable data sets). We present another 136 weaker TTV candidates (9.8% of suitable data sets) based on excess scatter of TTV measurements about a linear ephemeris. We anticipate that several of these planet candidates could be confirmed and perhaps characterized with more detailed TTV analyses using publicly available Kepler observations. For many others, Kepler has observed a long-term TTV trend, but an extended Kepler mission will be required to characterize the system via TTVs. We find that the occurrence rate of planet candidates that show TTVs is significantly increased (~68%) for planet candidates transiting stars with multiple transiting planet candidate when compared to planet candidates transiting stars with a single transiting planet candidate.
We present a new transit timing catalog of 2599 Kepler Objects of Interest (=KOIs), using the PDC-MAP long-cadence light curves that include the full seventeen quarters of the mission (ftp://wise- ftp.tau.ac.il/pub/tauttv/TTV/ver_112). The goal is to produce an easy-to-use catalog that can stimulate further analyses of interesting systems. For 779 KOIs with high enough SNRs, we derived the timing, duration and depth of 69,914 transits. For 1820 KOIs with lower SNR, we derived only the timing of 225,273 transits. After removal of outlier timings, we derived various statistics for each KOI that were used to indicate significant variations. Including systems found by previous works, we have detected 260 KOIs which showed significant TTVs with long-term variations (>100 day), and another fourteen KOIs with periodic modulations shorter than 100 day and small amplitudes. For five of those, the periodicity is probably due to the crossing of rotating stellar spots by the transiting planets.
The architectures of multiple planet systems can provide valuable constraints on models of planet formation, including orbital migration, and excitation of orbital eccentricities and inclinations. NASAs Kepler mission has identified 1235 transiting planet candidates (Borcuki et al 2011). The method of transit timing variations (TTVs) has already confirmed 7 planets in two planetary systems (Holman et al. 2010; Lissauer et al. 2011a). We perform a transit timing analysis of the Kepler planet candidates. We find that at least ~12% of planet candidates currently suitable for TTV analysis show evidence suggestive of TTVs, representing at least ~65 TTV candidates. In all cases, the time span of observations must increase for TTVs to provide strong constraints on planet masses and/or orbits, as expected based on n-body integrations of multiple transiting planet candidate systems (assuming circular and coplanar orbits). We find that the fraction of planet candidates showing TTVs in this data set does not vary significantly with the number of transiting planet candidates per star, suggesting significant mutual inclinations and that many stars with a single transiting planet should host additional non-transiting planets. We anticipate that Kepler could confirm (or reject) at least ~12 systems with multiple transiting planet candidates via TTVs. Thus, TTVs will provide a powerful tool for confirming transiting planets and characterizing the orbital dynamics of low-mass planets. If Kepler observations were extended to at least six years, then TTVs would provide much more precise constraints on the dynamics of systems with multiple transiting planets and would become sensitive to planets with orbital periods extending into the habitable zone of solar-type stars.
We present the results of a search for potential transit signals in the first three years of photometry data acquired by the Kepler Mission. The targets of the search include 112,321 targets which were observed over the full interval and an additional 79,992 targets which were observed for a subset of the full interval. From this set of targets we find a total of 11,087 targets which contain at least one signal which meets the Kepler detection criteria: those criteria are periodicity of the signal, an acceptable signal-to-noise ratio, and three tests which reject false positives. Each target containing at least one detected signal is then searched repeatedly for additional signals, which represent multi-planet systems of transiting planets. When targets with multiple detections are considered, a total of 18,406 potential transiting planet signals are found in the Kepler Mission dataset. The detected signals are dominated by events with relatively low signal-to-noise ratios and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 20 and 30 parts per million, with a few detections down to fewer than 10 parts per million. The detections exhibit signal-to-noise ratios from 7.1 sigma, which is the lower cut-off for detections, to over 10,000 sigma, and periods ranging from 0.5 days, which is the shortest period searched, to 525 days, which is the upper limit of achievable periods given the length of the data set and the requirement that all detections include at least 3 transits. The detected signals are compared to a set of known transit events in the Kepler field of view, many of which were identified by alternative methods; the comparison shows that the current search recovery rate for targets with known transit events is 98.3%.
159 - Jason H. Steffen 2012
We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-Domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anti-correlations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems Kepler-25, Kepler-26, Kepler-27, and Kepler-28, containing eight planets and one additional planet candidate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا