Do you want to publish a course? Click here

Enhanced harmonic generation and wave-mixing via two-color multiphoton excitation of atoms/molecules

88   0   0.0 ( 0 )
 Added by Garnik Mkrtchian F
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider harmonics generation and wave-mixing by two-color multi photon resonant excitation of three-level atoms/molecules in strong laser fields. The coherent part of the spectra corresponding to multicolor harmonics generation is investigated. The obtained analytical results on the basis of generalized rotating wave approximation are in a good agreement with numerical calculations. The results applied to the hydrogen atom and homonuclear diatomic molecular ion show that one can achieve efficient generation of moderately high multicolor harmonics via multiphoton resonant excitation by appropriate laser pulses.



rate research

Read More

We study the generation of terahertz radiation from atoms and molecules driven by an ultrashort fundamental laser and its second harmonic field by solving time-dependent Schrodinger equation (TDSE). The comparisons between one-, two-, and three- dimensional TDSE numerical simulations show that initial ionized wave-packet and its subsequent acceleration in the laser field and rescattering with long-range Coulomb potential play key roles. We also present the dependence of the optimum phase delay and yield of terahertz radiation on the laser intensity, wavelength, duration, and the ratio of two-color laser components. Terahertz wave generation from model hydrogen molecules are further investigated by comparing with high harmonic emission. It is found that the terahertz yield is following the alignment dependence of ionization rate, while the optimal two-color phase delays varies by a small amount when the alignment angle changes from 0 to 90 degrees, which reflects alignment dependence of attosecond electron dynamics. Finally we show that terahertz emission might be used to clarify the origin of interference in high harmonic generation from aligned molecules by coincidently measuring the angle-resolved THz yields.
127 - Anh-Thu Le , Toru Morishita , 2007
We demonstrate a simple method to improve the Lewenstein model for the description of high-order harmonic generation (HHG). It is shown that HHG spectra can be expressed as the product of a returning electron wave packet and the photo-recombination cross sections, where the former can be extracted from the Lewenstein model. By replacing plane waves with scattering waves in the calculation of recombination matrix elements, we showed that the resulting HHG spectra agree well with those from solving the time-dependent Schrodinger equation. The improved model can be used for quantitative calculations of high harmonics generated by molecules.
Using dynamical Hartree-Fock mean-field theory, we study the high-harmonic generation (HHG) in the fullerene molecules C$_{60}$ and C$_{70}$ under strong pump wave driving. We consider a strong-field regime and show that the output harmonic radiation exhibits multiple plateaus, whose borders are defined by the molecular excitonic lines and cutoff energies within each plateau scale linearly with the field strength amplitude. In contrast to atomic cases for the fullerene molecule, with the increase of the pump wave photon energy the cutoff harmonic energy is increased. We also show that with the increase of the electron-electron interaction energy overall the HHG rate is suppressed. We demonstrate that the C$_{70}$ molecule shows richer HHG spectra and a stronger high-harmonic intensity than the C$_{60}$.
We produce oriented rotational wave packets in CO and measure their characteristics via high harmonic generation. The wavepacket is created using an intense, femtosecond laser pulse and its second harmonic. A delayed 800 nm pulse probes the wave packet, generating even-order high harmonics that arise from the broken symmetry induced by the orientation dynamics. The even-order harmonic radiation that we measure appears on a zero background, enabling us to accurately follow the temporal evolution of the wave packet. Our measurements reveal that, for the conditions optimum for harmonic generation, the orientation is produced by preferential ionization which depletes the sample of molecules of one orientation.
We investigate a long-range interaction between $64D_{5/2}$ Rydberg-atom pairs and antiblockade effect employing a two-color excitation scheme. The first color (pulse A) is set to resonantly excite the Rydberg transition and prepare a few seed atoms, which establish a blockade region due to strong long-range interaction between Rydberg-atom pairs. The second color (pulse B) is blue detuned relative to Rydberg transition and enables further Rydberg excitation of atoms by counteracting the blockade effect. It is found that a few seed atoms lead to a huge difference of the Rydberg excitation with pulse B. The dynamic evolution of antiblockade excitation by varying the pulse-B duration at 30-MHz blue detuning is also investigated. The evolution result reveals that a small amount of seed atoms can trigger an avalanche Rydberg excitation. A modified superatom model is used to simulate the antiblockade effect and relevant dynamic evolution. The simulations are consistent with the experimental measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا