Do you want to publish a course? Click here

Thermal Relic Dark Matter Beyond the Unitarity Limit

58   0   0.0 ( 0 )
 Added by Wakutaka Nakano
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We discuss a simple model of thermal relic dark matter whose mass can be much larger than the so-called unitarity limit on the mass of point-like particle dark matter. The model consists of new strong dynamics with one flavor of fermions in the fundamental representation which is much heavier than the dynamical scale of the new strong dynamics. Dark matter is identified with the lightest baryonic hadron of the new dynamics. The baryonic hadrons annihilate into the mesonic hadrons of the new strong dynamics when they have large radii. Resultantly, thermal relic dark matter with a mass in the PeV range is possible.



rate research

Read More

We introduce DRAKE, a numerical precision tool for predicting the dark matter relic abundance also in situations where the standard assumption of kinetic equilibrium during the freeze-out process may not be satisfied. DRAKE comes with a set of three dedicated Boltzmann equation solvers that implement, respectively, the traditionally adopted equation for the dark matter number density, fluid-like equations that couple the evolution of number density and velocity dispersion, and a full numerical evolution of the phase-space distribution. We review the general motivation for these approaches and, for illustration, highlight three concrete classes of models where kinetic and chemical decoupling are intertwined in a way that quantitatively impacts the relic density: i) dark matter annihilation via a narrow resonance, ii) Sommerfeld-enhanced annihilation and iii) `forbidden annihilation to final states that are kinematically inaccessible at threshold. We discuss all these cases in some detail, demonstrating that the commonly adopted, traditional treatment can result in an estimate of the relic density that is wrong by up to an order of magnitude. The public release of DRAKE, along with several examples of how to calculate the relic density in concrete models, is provided at drake.hepforge.org
We investigate the so-called superWIMP scenario with gravitino as the lightest supersymmetric particle (LSP) in the context of non-standard cosmology, in particular, brane world cosmology. As a candidate of the next-to-LSP (NLSP), we examine slepton and sneutrino. Brane world cosmological effects dramatically enhance the relic density of the slepton or sneutrino NLSP, so that the NLSP with mass of order 100 GeV can provide the correct abundance of gravitino dark matter through its decay. We find that with an appropriate five dimensional Planck mass, this scenario can be realized consistently with the constraints from Big Bang Nucleosynthesis (BBN) for both NLSP candidates of slepton and sneutrino. The BBN constraints for slepton NLSP are more stringent than that for sneutrino, as the result, the gravitino must be rather warm in the slepton NLSP case. The energy density of gravitino produced by thermal scattering is highly suppressed and negligible due to the brane world cosmological effects.
Using the upper bound on the inelastic reaction cross-section implied by S-matrix unitarity, we derive the thermally averaged maximum dark matter (DM) annihilation rate for general $k rightarrow 2$ number-changing reactions, with $k geq 2$, taking place either entirely within the dark sector, or involving standard model fields. This translates to a maximum mass of the particle saturating the observed DM abundance, which, for dominantly $s$-wave annihilations, is obtained to be around $130$ TeV, $1$ GeV, $7$ MeV and $110$ keV, for $k=2,3,4$ and $5$, respectively, in a radiation dominated Universe, for a real or complex scalar DM stabilized by a minimal symmetry. For modified thermal histories in the pre-big bang nucleosynthesis era, with an intermediate period of matter domination, values of reheating temperature higher than $mathcal{O}(200)$ GeV for $k geq 4$, $mathcal{O}(1)$ TeV for $k=3$ and $mathcal{O}(50)$ TeV for $k=2$ are strongly disfavoured by the combined requirements of unitarity and DM relic abundance, for DM freeze-out before reheating.
We examine the vector-portal inelastic dark matter (DM) model with DM mass $m_chi$ and dark photon mass $m_{A}$, in the `forbidden dark matter regime where $1 lesssim m_{A}/m_chi lesssim 2$, carefully tracking the dark sector temperature throughout freezeout. The inelastic nature of the dark sector relaxes the stringent cosmic microwave background (CMB) and self-interaction constraints compared to symmetric DM models. We determine the CMB limits on both annihilations involving excited states and annihilation into $e^+e^-$ through initial-state-radiation of an $A$, as well as limits on the DM self-scattering, which proceeds at the one-loop level. The unconstrained parameter space serves as an ideal target for accelerator $A$ searches, and provides a DM self-interaction cross section that is large enough to observably impact small-scale structure.
We present a new mechanism for producing the correct relic abundance of dark photon dark matter over a wide range of its mass, extending down to $10^{-20},mathrm{eV}$. The dark matter abundance is initially stored in an axion which is misaligned from its minimum. When the axion starts oscillating, it efficiently transfers its energy into dark photons via a tachyonic instability. If the dark photon mass is within a few orders of magnitude of the axion mass, $m_{gamma}/m_a = {cal O}(10^{-3} - 1)$, then dark photons make up the dominant form of dark matter today. We present a numerical lattice simulation for a benchmark model that explicitly realizes our mechanism. This mechanism firms up the motivation for a number of experiments searching for dark photon dark matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا