Do you want to publish a course? Click here

Unitarity limits on thermal dark matter in (non-)standard cosmologies

69   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the upper bound on the inelastic reaction cross-section implied by S-matrix unitarity, we derive the thermally averaged maximum dark matter (DM) annihilation rate for general $k rightarrow 2$ number-changing reactions, with $k geq 2$, taking place either entirely within the dark sector, or involving standard model fields. This translates to a maximum mass of the particle saturating the observed DM abundance, which, for dominantly $s$-wave annihilations, is obtained to be around $130$ TeV, $1$ GeV, $7$ MeV and $110$ keV, for $k=2,3,4$ and $5$, respectively, in a radiation dominated Universe, for a real or complex scalar DM stabilized by a minimal symmetry. For modified thermal histories in the pre-big bang nucleosynthesis era, with an intermediate period of matter domination, values of reheating temperature higher than $mathcal{O}(200)$ GeV for $k geq 4$, $mathcal{O}(1)$ TeV for $k=3$ and $mathcal{O}(50)$ TeV for $k=2$ are strongly disfavoured by the combined requirements of unitarity and DM relic abundance, for DM freeze-out before reheating.



rate research

Read More

Once dark matter has been discovered and its particle physics properties have been determined, a crucial question rises concerning how it was produced in the early Universe. If its thermally averaged annihilation cross section is in the ballpark of few$times 10^{-26}$ cm$^3$/s, the WIMP mechanism in the standard cosmological scenario (i.e. radiation dominated Universe) will be highly favored. If this is not the case one can either consider an alternative production mechanism, or a non-standard cosmology. Here we study the dark matter production in scenarios with a non-standard expansion history. Additionally, we reconstruct the possible non-standard cosmologies that could make the WIMP mechanism viable.
A notable feature of UV freeze-in is that the relic density is strongly dependent on the highest temperatures of the thermal bath, and a common assumption is that the relevant highest temperature should be the reheating temperature after inflation $T_text{RH}$. However, the temperature of the thermal bath can be significantly higher in certain scenarios, reaching a value denoted T max , a fact which is only apparent away from the instantaneous decay approximation. Interestingly, it has been shown that if the operators are of sufficiently high mass dimension then the dark matter abundance can be enhanced by a boost factor depending on ($T_text{max}/T_text{RH}$) relative to naive estimates assuming instantaneous reheating. We highlight here that in non-standard cosmological histories the critical mass dimension of the operator above at which the instantaneous decay approximation breaks down, and the exponent of the boost factor, depend on the equation of state $omega$ prior to reheating. We highlight four examples in which the dark matter abundance receives a significant enhancement in the context of gravitino dark matter, the moduli portal, the Higgs portal, and the spin-2 portal (as might arise in bimetric gravity models). We comment on the transition from kination domination to radiation domination as a motivated example of non-standard cosmologies.
We formulate a perturbative framework for the flavor transformation of the standard three active neutrinos but with non-unitary flavor mixing matrix, a system which may be relevant for leptonic unitarity test. We use the $alpha$ parametrization of the non-unitary matrix and take its elements $alpha_{beta gamma}$ ($beta,gamma = e,mu,tau$) and the ratio $epsilon simeq Delta m^2_{21} / Delta m^2_{31}$ as the small expansion parameters. Qualitatively new two features that hold in all the oscillation channels are uncovered in the probability formula obtained to first order in the expansion: (1) The phases of the complex $alpha$ elements always come in into the observable in the particular combination with the $ u$SM CP phase $delta$ in the form $[e^{- i delta } bar{alpha}_{mu e}, ~e^{ - i delta} bar{alpha}_{tau e}, ~bar{alpha}_{tau mu}]$ under the PDG convention of unitary $ u$SM mixing matrix. (2) The diagonal $alpha$ parameters appear in particular combinations $left( a/b - 1 right) alpha_{ee} + alpha_{mu mu}$ and $alpha_{mu mu} - alpha_{tau tau}$, where $a$ and $b$ denote, respectively, the matter potential due to CC and NC reactions. This property holds only in the unitary evolution part of the probability, and there is no such feature in the genuine non-unitary part, while the $delta$ - $alpha$ parameter phase correlation exists for both. The reason for such remarkable stability of the phase correlation is discussed.
We derive 95% CL lower limits on the lifetime of decaying dark matter in the channels $Z u$, $Well$ and $h u$ using measurements of the cosmic-ray antiproton flux by the PAMELA experiment. Performing a scan over the allowed range of cosmic-ray propagation parameters we find lifetime limits in the range of $8 times 10^{28}$s to $5 times 10^{25}$s for dark matter masses from roughly 100 GeV to 10 TeV. We apply these limits to the well-motivated case of gravitino dark matter in scenarios with bilinear violation of R-parity and find a similar range of lifetime limits for the same range of gravitino masses. Converting the lifetime limits to constraints on the size of the R-parity violating coupling we find upper limits in the range of $10^{-8}$ to $8 times 10^{-13}$.
We report on constraints on the lifetime of decaying gravitino dark matter in models with bilinear R-parity violation derived from observations of cosmic-ray antiprotons with the PAMELA experiment. Performing a scan over a viable set of cosmic-ray propagation parameters we find lower limits ranging from $8times 10^{28}$s to $6times 10^{28}$s for gravitino masses from roughly 100 GeV to 10 TeV. Comparing these limits to constraints derived from gamma-ray and neutrino observations we conclude that the presented antiproton limits are currently the strongest and most robust limits on the gravitino lifetime in the considered mass range. These constraints correspond to upper limits on the size of the bilinear R-parity breaking parameter in the range of $10^{-8}$ to $8times 10^{-13}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا