Do you want to publish a course? Click here

Doppler-free spectroscopy on Cs D$_1$ line with a dual-frequency laser

136   0   0.0 ( 0 )
 Added by Rodolphe Boudot
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on Doppler-free laser spectroscopy in a Cs vapor cell using a dual-frequency laser system tuned on the Cs D$_1$ line. Using counter-propagating beams with crossed linear polarizations, an original sign-reversal of the usual saturated absorption dip and large increase in Doppler-free atomic absorption is observed. This phenomenon is explained by coherent population trapping (CPT) effects. The impact of laser intensity and light polarization on absorption profiles is reported in both single-frequency and dual-frequency regimes. In the latter, frequency stabilization of two diode lasers was performed, yielding a beat-note fractional frequency stability at the level of $3 times 10^{-12}$ at 1 s averaging time. These performances are about an order of magnitude better than those obtained using a conventional single-frequency saturated absorption scheme.



rate research

Read More

The $3p^{4}$ $^{3}$P$_{J}$ - $3p^{3}4p$ $^{3}$P$_{J}$ transition in the sulphur atom is investigated in a precision two-photon excitation scheme under Doppler-free and collision-free circumstances yielding an absolute accuracy of 0.0009 cm$^{-1}$, using a narrowband pulsed laser. This verifies and improves the level separations between amply studied odd parity levels with even parity levels in S I. An improved value for the $^{3}$P$_{2}$ - $^{3}$P$_{1}$ ground state fine structure splitting is determined at $396.0564$ (7) cm$^{-1}$. A $^{34}$S - $^{32}$S atomic isotope shift was measured from combining time-of-flight mass spectrometry with laser spectroscopy.
Selective reflection of a laser radiation from an interface formed by a dielectric window and a potassium atomic vapour confined in a nano-cell with $350~$nm gap thickness is implemented for the first time to study the atomic transitions of K D$_2$ line in external magnetic fields. In moderate $B$-fields, there are 44 individual Zeeman transitions which reduce to two groups (one formed by $sigma^+$ the other one by $sigma^-$ circularly-polarised light), each containing eight atomic transitions, as the magnetic field increases. Each of these groups contains one so-called guiding transition whose particularities are to have a probability (intensity) as well as a frequency shift slope (in MHz/G) that are constant in the whole range of $0 - 10~$kG magnetic fields. In the case of $pi$-polarised laser radiation, among eight transitions two are forbidden at $B = 0$, yet their probabilities undergo a giant modification under the influence of a magnetic field. We demonstrate that for $B$-fields $> 165~$G a complete hyperfine Paschen-Back regime is observed. Other peculiarities of K D$_2$ line behaviour in magnetic field are also presented. We show a very good agreement between theoretical calculations and experiments. The recording of the hyperfine Paschen-Back regime of K D$_2$ line with high spectral resolution is demonstrated for the first time.
Dual-comb spectroscopy has emerged as an indispensable analytical technique in applications that require high resolution and broadband coverage within short acquisition times. Its experimental realization, however, remains hampered by intricate experimental setups with large power consumption. Here, we demonstrate an ultra-simple free-running dual-comb spectrometer realized in a single all-fiber cavity suitable for the most demanding Doppler-limited measurements. Our dual-comb laser utilizes just a few basic fiber components, allows to tailor the repetition rate difference, and requires only 350 mW of electrical power for sustained operation over a dozen of hours. As a demonstration, we measure low-pressure hydrogen cyanide within 1.7 THz bandwidth, and obtain better than 1% precision over a terahertz in 200 ms enabled by a drastically simplified all-computational phase correction algorithm. The combination of the unprecedented setup simplicity, comb tooth resolution and high spectroscopic precision paves the way for proliferation of frequency comb spectroscopy even outside the laboratory.
Gray molasses is a powerful tool for sub-Doppler laser cooling of atoms to low temperatures. For alkaline atoms, this technique is commonly implemented with cooling lasers which are blue-detuned from either the D1 or D2 line. Here we show that efficient gray molasses can be implemented on the D2 line of 40K with red-detuned lasers. We obtained temperatures of 48(2) microKelvin, which enables direct loading of 9.2(3)*10^6 atoms from a magneto-optical trap into an optical dipole trap. We support our findings by a one-dimensional model and three-dimensional numerical simulations of the optical Bloch equations which qualitatively reproduce the experimentally observed cooling effects.
We report on the demonstration of Doppler-free spectroscopy of metastable Sr atoms using a hollow cathode lamp (HCL). We employed a custom Sr HCL which is filled with a mixture of 0.5-Torr Ne and 0.5-Torr Xe as a buffer gas to suppress velocity changing collisions and increase the populations in all the $(5s5p){}^3P_J(J=0, 1, 2)$ metastable states. We performed frequency-modulation spectroscopy for the $(5s5p){}^3P_0-(5s6s){}^3S_1$, $(5s5p){}^3P_1-(5s6s){}^3S_1$, $(5s5p){}^3P_2-(5s5d){}^3D_2$, and $(5s5p){}^3P_2-(5s5d){}^3D_3$ transitions with sufficient signal to noise ratios for laser frequency stabilization. We also observed the hyperfine transitions of $(5s5p){}^3P_2-(5s5d){}^3D_3$ of $^{87}mathrm{Sr}$ . This method would greatly facilitate laser cooling of Sr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا