Do you want to publish a course? Click here

The role of ion transport phenomena in memristive double barrier devices

64   0   0.0 ( 0 )
 Added by Thomas Mussenbrock
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we report on the role of ion transport for the dynamic behavior of a double barrier quantum mechanical Al/Al$_2$O$_3$/Nb$_{text{x}}$O$_{text{y}}$/Au memristive device based on numerical simulations in conjunction with experimental measurements. The device consists of an ultra-thin Nb$_{text{x}}$O$_{text{y}}$ solid state electrolyte between an Al$_2$O$_3$ tunnel barrier and a semiconductor metal interface at an Au electrode. It is shown that the device provides a number of interesting features for potential applications such as an intrinsic current compliance, a relatively long retention time, and no need for an initialization step. Therefore, it is particularly attractive for applications in highly dense random access memories or neuromorphic mixed signal circuits. However, the underlying physical mechanisms of the resistive switching are still not completely understood yet. To investigate the interplay between the current transport mechanisms and the inner atomistic device structure a lumped element circuit model is consistently coupled with 3D kinetic Monte Carlo model for the ion transport. The simulation results indicate that the drift of charged point defects within the Nb$_{text{x}}$O$_{text{y}}$ is the key factor for the resistive switching behavior. It is shown in detail that the diffusion of oxygen modifies the local electronic interface states resulting in a change of the interface properties of the double barrier device.



rate research

Read More

We report on resistive switching of memristive electrochemical metallization devices using 3D kinetic Monte Carlo simulations describing the transport of ions through a solid state electrolyte of an Ag/TiO$_{text{x}}$/Pt thin layer system. The ion transport model is consistently coupled with solvers for the electric field and thermal diffusion. We show that the model is able to describe not only the formation of conducting filaments but also its dissolution. Furthermore, we calculate realistic current-voltage characteristics and resistive switching kinetics. Finally, we discuss in detail the influence of both the electric field and the local heat on the switching processes of the device.
In this work we report on kinetic Monte-Carlo calculations of resistive switching and the underlying growth dynamics of filaments in an electrochemical metallization device consisting of an Ag/TiO2/Pt sandwich-like thin film system. The developed model is not limited to i) fast time scale dynamics and ii) only one growth and dissolution cycle of metallic filaments. In particular, we present results from the simulation of consecutive cycles. We find that the numerical results are in excellent agreement with experimentally obtained data. Additionally, we observe an unexpected filament growth mode which is in contradiction to the widely acknowledged picture of filament growth, but consistent with recent experimental findings.
Ferroelectric memristors are intensively studied due to their potential implementation in data storage and processing devices. In this work we show that the memristive behavior of metal/ferroelectric oxide/metal devices relies on the competition of two effects: the modulation of metal/ferroelectric interface barriers by the switchable ferroelectric polarization and the electromigration of oxygen vacancies, with the depolarizing field playing a fundamental role in the latter. We simulate our experimental results with a phenomenological model that includes both effects and we reproduce several non-trivial features of the electrical response, including resistance relaxations observed after external poling. Besides providing insight into the underlying physics of these complex devices, our work suggests that it is possible to combine non-volatile and volatile resistive changes in single ferroelectric memristors, an issue that could be useful for the development of neuromorphic devices.
The advent of reliable, nanoscale memristive components is promising for next generation compute-in-memory paradigms, however, the intrinsic variability in these devices has prevented widespread adoption. Here we show coherent electron wave functions play a pivotal role in the nanoscale transport properties of these emerging, non-volatile memories. By characterizing both filamentary and non-filamentary memristive devices as disordered Anderson systems, the switching characteristics and intrinsic variability arise directly from the universality of electron transport in disordered media. Our framework suggests localization phenomena in nanoscale, solid-state memristive systems are directly linked to circuit level performance. We discuss how quantum conductance fluctuations in the active layer set a lower bound on device variability. This finding implies there is a fundamental quantum limit on the reliability of memristive devices, and electron coherence will play a decisive role in surpassing or maintaining Moores Law with these systems.
120 - E.V. Bezuglyi , E.N. Bratus , 2011
We solve the coherent multiple Andreev reflection (MAR) problem and calculate current-voltage characteristics (IVCs) for Josephson SINIS junctions, where S are local-equilibrium superconducting reservoirs, I denotes tunnel barriers, and N is a short diffusive normal wire, the length of which is much smaller than the coherence length, and the resistance is much smaller than the resistance of the tunnel barriers. The charge transport regime in such junctions qualitatively depends on a characteristic value gamma = Delta tau_d of relative phase shifts between the electrons and retro-reflected holes accumulated during the dwell time tau_d. In the limit of small electron-hole dephasing gamma << 1, our solution recovers a known formula for a short mesoscopic connector extended to the MAR regime. At large dephasing, the subharmonic gap structure in the IVC scales with 1/ gamma, which thus plays the role of an effective tunneling parameter. In this limit, the even gap subharmonics are resonantly enhanced, and the IVC exhibits portions with negative differential resistance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا