Do you want to publish a course? Click here

XMM-Newton reveals a Seyfert-like X-ray spectrum in the z=3.6 QSO B1422+231

68   0   0.0 ( 0 )
 Added by Dadina Mauro Dr
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Matter flows in the central regions of quasars during their active phases are probably responsible for the properties of the super-massive black holes and that of the bulges of host galaxies. To understand how this mechanism works, we need to characterize the geometry and the physical state of the accreting matter at cosmological redshifts. The few high quality X-ray spectra of distant QSO have been collected by adding sparse pointings of single objects obtained during X-ray monitoring campaigns. This could have introduced spurious spectral features due to source variability. Here we present a single epoch, high-quality X-ray spectrum of the z=3.62 quasar B1422+231 whose flux is enhanced by gravitationally lensing (F$_{2-10 keV}sim$10$^{-12}$erg s$^{-1}$ cm$^{-2}$). The X-ray spectrum of B1422+231 is found to be very similar to the one of a typical nearby Seyfert galaxy. Neutral absorption is detected (N$_{H}sim$5$times$10$^{21}$ cm$^{-2}$ at the redshift of the source) while a strong absorption edge is measured at E$sim$7.5 keV with an optical depth of $tausim$0.14. We also find hints of the FeK$alpha$ line in emission at E$sim$6.4 keV line (EW$lesssim$70 eV) and a hump is detected in the E$sim$15-20 keV energy band (rest-frame) suggesting the presence of a reflection component. In this scenario, the primary emission of B1422+231 is most probably dominated by the thermal Comptonization of UV seed photons in a corona with kT$sim$40 keV and the reflection component has a relative direct-to-reflect normalization r$sim$1. These findings confirm that gravitational lensing is effective to obtain good quality X-ray spectral information of quasar at high-z, moreover they support the idea that the same general picture characterizing active galactic nuclei in the nearby Universe is valid also at high redshift.



rate research

Read More

We present new spectroscopy of the z=3.62 gravitationally lensed quasar B1422+117 from the Gemini North GMOS integral field spectrograph. We observe significant differential magnifications between the broad emission lines and the continuum, as well as across the velocity structure of the Lyman-alpha line. We take advantage of this differential microlensing to algebraically decompose the quasar spectrum into the absorbed broad emission line and absorbed continuum components. We use the latter to derive the intrinsic Ly-alpha forest absorption spectrum. The proximity effect is clearly detected, with a proximity zone edge of 8.6-17.3 Mpc from the quasar, implying (perhaps intermittent) activity over at least 28 Myrs. The Ly-alpha line profile exhibits a blue excess that is inconsistent with a symmetric fit to the unabsorbed red side. This has important implications for the use of this fitting technique in estimating the absorbed blue Ly-alpha wings of Gunn-Peterson trough quasars.
The Seyfert Galaxy Mrk 335 is known for its frequent changes of flux and spectral shape in the X-ray band occurred during recent years. These variations may be explained by the onset of a wind that previous, non-contemporaneous high-resolution spectroscopy in X-ray and UV bands located at accretion disc scale. A simultaneous new campaign by XMM-Newton and HST caught the source at an historical low flux in the X-ray band. The soft X-ray spectrum is dominated by prominent emission features, and by the effect of a strong ionized absorber with an outflow velocity of 5-6X10$^3$~km~s$^{-1}$. The broadband spectrum obtained by the EPIC-pn camera reveals the presence of an additional layer of absorption by gas at moderate ionization covering 80% of the central source, and tantalizing evidence for absorption in the Fe~K band outflowing at the same velocity of the soft X-ray absorber. The HST-COS spectra confirm the simultaneous presence of broad absorption troughs in CIV, Ly alpha, Ly beta and OVI, with velocities of the order of 5000 km~s$^{-1}$ and covering factors in the range of 20-30%. Comparison of the ionic column densities and of other outflow parameters in the two bands show that the X-ray and UV absorbers are likely originated by the same gas. The resulting picture from this latest multi-wavelength campaign confirms that Mrk 335 undergoes the effect of a patchy, medium-velocity outflowing gas in a wide range of ionization states that seem to be persistently obscuring the nuclear continuum.
We present measurements of the Galactic halos X-ray emission for 110 XMM-Newton sight lines, selected to minimize contamination from solar wind charge exchange emission. We detect emission from few million degree gas on ~4/5 of our sight lines. The temperature is fairly uniform (median = 2.22e6 K, interquartile range = 0.63e6 K), while the emission measure and intrinsic 0.5--2.0 keV surface brightness vary by over an order of magnitude (~(0.4-7)e-3 cm^-6 pc and ~(0.5-7)e-12 erg cm^-2 s^-1 deg^-2, respectively, with median detections of 1.9e-3 cm^-6 pc and 1.5e-12 erg cm^-2 s^-1 deg^-2, respectively). The high-latitude sky contains a patchy distribution of few million degree gas. This gas exhibits a general increase in emission measure toward the inner Galaxy in the southern Galactic hemisphere. However, there is no tendency for our observed emission measures to decrease with increasing Galactic latitude, contrary to what is expected for a disk-like halo morphology. The measured temperatures, brightnesses, and spatial distributions of the gas can be used to place constraints on models for the dominant heating sources of the halo. We provide some discussion of such heating sources, but defer comparisons between the observations and detailed models to a later paper.
Observations of interstellar clouds that cast shadows in the soft X-ray background can be used to separate the background Galactic halo emission from the local emission due to solar wind charge exchange (SWCX) and/or the Local Bubble (LB). We present an XMM-Newton observation of a shadowing cloud, G225.60-66.40, that is sufficiently compact that the on- and off-shadow spectra can be extracted from a single field of view (unlike previous shadowing observations of the halo with CCD-resolution spectrometers, which consisted of separate on- and off-shadow pointings). We analyzed the spectra using a variety of foreground models: one representing LB emission, and two representing SWCX emission. We found that the resulting halo model parameters (temperature $T_h approx 2 times 10^6$ K, emission measure $E_h approx 4 times 10^{-3}$ cm$^{-6}$ pc) were not sensitive to the foreground model used. This is likely due to the relative faintness of the foreground emission in this observation. However, the data do favor the existence of a foreground. The halo parameters derived from this observation are in good agreement with those from previous shadowing observations, and from an XMM-Newton survey of the Galactic halo emission. This supports the conclusion that the latter results are not subject to systematic errors, and can confidently be used to test models of the halo emission.
128 - M.Guainazzi 2010
We present the first unambiguous evidence of a broad (Gaussian width ~330 eV) component of the iron K-alpha fluorescent emission line in the X-ray obscured Narrow Line Seyfert 1 Galaxy NGC5506. This is the main results of a spectroscopic monitoring campaign on this source performed with the XMM-Newton observatory between February 2001 and January 2009. The broad line lacks extreme redwards skewness. If modelled with a relativistic component, the profile of the line is consistent with a flat emissivity radial dependence (alpha~1.9). The disk inclination (~40 degrees) is nominally larger then typically observed in unobscured AGN, in agreement with most measurements of broadened iron lines in Seyfert 2 galaxies. The quality of the data allows us to decompose the full iron emission line complex, and to study its long-term (timescales of weeks to years) variability pattern. The intensity of the neutral and narrow iron K-alpha core remains constant during the monitoring campaign. This indicates that the optically thick gas responsible for the non-relativistic reprocessing of the primary AGN continuum in NGC5506 is probably located in the torus rather than in the optical Broad Line Region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا