Do you want to publish a course? Click here

Hydrostatic pressure response of an oxide two-dimensional electron system

101   0   0.0 ( 0 )
 Added by Jone Zabaleta
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional electron systems with fascinating properties exist in multilayers of standard semiconductors, on helium surfaces, and in oxides. Compared to the two-dimensional (2D) electron gases of semiconductors, the 2D electron systems in oxides are typically more strongly correlated and more sensitive to the microscopic structure of the hosting lattice. This sensitivity suggests that the oxide 2D systems are highly tunable by hydrostatic pressure. Here we explore the effects of hydrostatic pressure on the well-characterized 2D electron system formed at LaAlO$_{3}$ -SrTiO$_{3}$ interfaces[1] and measure a pronounced, unexpected response. Pressure of $sim$2 GPa reversibly doubles the 2D carrier density $n_{s}$ at 4 K. Along with the increase of $n_{s}$, the conductivity and mobility are reduced under pressure. First-principles pressure simulations reveal the same behavior of the carrier density and suggest a possible mechanism of the mobility reduction, based on the dielectric properties of both materials and their variation under external pressure.

rate research

Read More

Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. In order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameters is required. Here, by utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO3/SrTiO3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson-Schrodinger subband model. In particular, the large nonlinear dielectric response of SrTiO3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. Our study provides a broad framework for understanding various reported phenomena at the LaAlO3/SrTiO3 interface.
We present an experimental study on microwave illuminated high mobility MgZnO/ZnO based two-dimensional electron systems with different electron densities and, hence, varying Coulomb interaction strength. The photoresponse of the low-temperature dc resistance in perpendicular magnetic field is examined in low and high density samples over a broad range of illumination frequencies. In low density samples a response due to cyclotron resonance (CR) absorption dominates, while high density samples exhibit pronounced microwave-induced resistance oscillations (MIRO). Microwave transmission experiments serve as a complementary means of detecting the CR over the entire range of electron densities and as a reference for the band mass unrenormalized by interactions. Both CR and MIRO-associated features in the resistance permit extraction of the effective mass of electrons but yield two distinct values. The conventional cyclotron mass representing center-of-mass dynamics exhibits no change with density and coincides with the band electron mass of bulk ZnO, while MIRO mass reveals a systematic increase with lowering electron density consistent with renormalization expected in interacting Fermi liquids.
A study of the conductance noise in a two-dimensional electron system (2DES) in Si at low temperatures (T) reveals the onset of large, non-Gaussian noise after cooling from an equilibrium state at a high T with a fixed carrier density n_s. This behavior, which signifies the falling out of equilibrium of the 2DES as T->0, is observed for n_s<n_g (n_g - glass transition density). A protocol where density is changed by a small value Delta n_s at low T produces the same results for the noise power spectra. However, a detailed analysis of the non-Gaussian probability density functions (PDFs) of the fluctuations reveals that Delta n_s has a qualitatively different and more dramatic effect than Delta T, suggesting that Delta n_s induces strong changes in the free energy landscape of the system as a result of Coulomb interactions. The results from a third, waiting-time (t_w) protocol, where n_s is changed temporarily during t_w by a large amount, demonstrate that non-Gaussian PDFs exhibit history dependence and an evolution towards a Gaussian distribution as the system ages and slowly approaches equilibrium. By calculating the power spectra and higher-order statistics for the noise measured over a wide range of the applied voltage bias, it is established that the non-Gaussian noise is observed in the regime of Ohmic or linear response, i.e. that it is not caused by the applied bias.
High mobility two-dimensional electron gases (2DEGs) underpin todays silicon based devices and are of fundamental importance for the emerging field of oxide electronics. Such 2DEGs are usually created by engineering band offsets and charge transfer at heterointerfaces. However, in 2011 it was shown that highly itinerant 2DEGs can also be induced at bare surfaces of different transition metal oxides where they are far more accessible to high resolution angle resolved photoemission (ARPES) experiments. Here we review work from this nascent field which has led to a systematic understanding of the subband structure arising from quantum confinement of highly anisotropic transition metal d-states along different crystallographic directions. We further discuss the role of different surface preparations and the origin of surface 2DEGs, the understanding of which has permitted control over 2DEG carrier densities. Finally, we discuss signatures of strong many-body interactions and how spectroscopic data from surface 2DEGs may be related to the transport properties of interface 2DEGs in the same host materials.
Electric field effect in electronic double layer transistor (EDLT) configuration with ionic liquids as the dielectric materials is a powerful means of exploring various properties in different materials. Here we demonstrate the modulation of electrical transport properties and extremely high mobility of two-dimensional electron gas at LaAlO$_3$/SrTiO$_3$ (LAO/STO) interface through ionic liquid-assisted electric field effect. By changing the gate voltages, the depletion of charge carrier and the resultant enhancement of electron mobility up to 19380 cm$^2$/Vs are realized, leading to quantum oscillations of the conductivity at the LAO/STO interface. The present results suggest that high-mobility oxide interfaces which exhibit quantum phenomena could be obtained by ionic liquid-assisted field effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا