The main physical results on the registration of solar neutrinos and the search for rare processes obtained by the Borexino collaboration to date are presented.
The MoEDAL experiment at the LHC is optimised to detect highly ionising particles such as magnetic monopoles, dyons and (multiply) electrically charged stable massive particles predicted in a number of theoretical scenarios. MoEDAL, deployed in the LHCb cavern, combines passive nuclear track detectors with magnetic monopole trapping volumes (MMTs), while spallation-product backgrounds are being monitored with an array of MediPix pixel detectors. An introduction to the detector concept and its physics reach, complementary to that of the large general purpose LHC experiments ATLAS and CMS, will be given. Emphasis is given to the recent MoEDAL results at 13 TeV, where the null results from a search for magnetic monopoles in MMTs exposed in 2015 LHC collisions set the world-best limits on particles with magnetic charges more than 1.5 Dirac charge. The potential to search for heavy, long-lived supersymmetric electrically-charged particles is also discussed.
It is expected that a radio signal in the microwave range is produced in the atmosphere due to molecular bremsstrahlung initiated by extensive air showers. The CROME (Cosmic-Ray Observation via Microwave Emission) experiment was built to search for this microwave signal. Radiation from the atmosphere is monitored in the extended C band (3.4--4.2 GHz) in coincidence with showers detected by the KASCADE-Grande experiment. The detector setup consists of several parabolic antennas and fast read-out electronics. The sensitivity of the detector has been measured with different methods. First results after half a year of data taking are presented.
The GlueX experiment at Jefferson Lab ran with its first commissioning beam in late 2014 and the spring of 2015. Data were collected on both plastic and liquid hydrogen targets, and much of the detector has been commissioned. All of the detector systems are now performing at or near design specifications and events are being fully reconstructed, including exclusive production of $pi^{0}$, $eta$ and $omega$ mesons. Linearly-polarized photons were successfully produced through coherent bremsstrahlung and polarization transfer to the $rho$ has been observed.
The PICASSO dark matter search experiment operated an array of 32 superheated droplet detectors containing 3.0 kg of C$_{4}$F$_{10}$ and collected an exposure of 231.4 kgd at SNOLAB between March 2012 and January 2014. We report on the final results of this experiment which includes for the first time the complete data set and improved analysis techniques including mbox{acoustic} localization to allow fiducialization and removal of higher activity regions within the detectors. No signal consistent with dark matter was observed. We set limits for spin-dependent interactions on protons of $sigma_p^{SD}$~=~1.32~$times$~10$^{-2}$~pb (90%~C.L.) at a WIMP mass of 20 GeV/c$^{2}$. In the spin-independent sector we exclude cross sections larger than $sigma_p^{SI}$~=~4.86~$times$~10$^{-5 }$~pb~(90% C.L.) in the region around 7 GeV/c$^{2}$. The pioneering efforts of the PICASSO experiment have paved the way forward for a next generation detector incorporating much of this technology and experience into larger mass bubble chambers.
We propose to include in the analysis of Borexino single event energy spectrum the scattering of $^{40}$K geo-antineutrinos by scintillator electrons. The Hydridic Earth model predicts the concentration of potassium in modern Earth from 1% to 4% of the Earth mass. We calculated contribution of $^{40}$K geo-antineutrino interactions in single Borexino events for these concentrations. This contribution is comparable to the contribution from the interaction of CNO neutrinos. We discuss the reasons for using the Hydridic Earth model.