Do you want to publish a course? Click here

Electroweakino pair production at the LHC: NLO SUSY-QCD corrections and parton-shower effects

122   0   0.0 ( 0 )
 Added by Julien Baglio
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We present a set of NLO SUSY-QCD calculations for the pair production of neutralinos and charginos at the LHC, and their matching to parton-shower programs in the framework of the POWHEG-BOX program package. The code we have developed provides a SUSY Les Houches Accord interface for setting supersymmetric input parameters. Decays of the neutralinos and charginos and parton-shower effects can be simulated with PYTHIA. To illustrate the capabilities of our program, we present phenomenological results for a representative SUSY parameter point. We find that NLO-QCD corrections increase the production rates for neutralinos and charginos significantly. The impact of parton-shower effects on distributions of the weakinos is small, but non-negligible for jet distributions.



rate research

Read More

175 - H. Jung 2011
We present hadron-level predictions from the Monte Carlo generator Cascade and numerical level calculations of beauty quark and inclusive b-jet production in the framework of the kT -factorization QCD approach for CERN LHC energies. The unintegrated gluon densities in a proton are determined using the CCFM evolution equation and the Kimber- Martin-Ryskin (KMR) prescription. We study the theoretical uncertainties of our calcula- tions and investigate the effects coming from parton showers in initial and final states. Our predictions are compared with the recent data taken by the CMS collaboration.
The production of WWZ at the LHC is an important process to test the quartic gauge couplings of the Standard Model as well as an important background for new physics searches. A good theoretical understanding at next-to-leading order (NLO) is therefore valuable. In this paper, we present the calculation of the NLO electroweak (EW) correction to this channel with on-shell gauge bosons in the final state. It is then combined with the NLO QCD correction to get the most up-to-date prediction. We study the impact of these corrections on the total cross section and some distributions. The NLO EW correction is small for the total cross section but becomes important in the high energy regime for the gauge boson transverse momentum distributions.
Higgs-pair production via gluon fusion is the dominant production mechanism of Higgs-boson pairs at hadron colliders. In this work, we present details of our numerical determination of the full next-to-leading-order (NLO) QCD corrections to the leading top-quark loops. Since gluon fusion is a loop-induced process at leading order, the NLO calculation requires the calculation of massive two-loop diagrams with up to four different mass/energy scales involved. With the current methods, this can only be done numerically, if no approximations are used. We discuss the setup and details of our numerical integration. This will be followed by a phenomenological analysis of the NLO corrections and their impact on the total cross section and the invariant Higgs-pair mass distribution. The last part of our work will be devoted to the determination of the residual theoretical uncertainties with special emphasis on the uncertainties originating from the scheme and scale dependence of the (virtual) top mass. The impact of the trilinear Higgs-coupling variation on the total cross section will be discussed.
150 - H. Jung 2010
We present hadron-level predictions from the Monte Carlo generator Cascade and numerical calculations of charm and beauty production at the Fermilab Tevatron within the framework of the $k_T$-factorization QCD approach. Our consideration is based on the CCFM-evolved unintegrated gluon densities in a proton. The performed analysis covers the total and differential cross sections of open charm and beauty quarks, $B$ and $D$ mesons (or rather muons from their semileptonic decays) and the total and differential cross sections of $b bar b$ di-jet hadroproduction. We study the theoretical uncertainties of our calculations and investigate the effects coming from parton showers in initial and final states. Our predictions are compared with the recent experimental data taken by the D0 and CDF collaborations. Special attention is put on the specific angular correlations between the final-state particles. We demonstrate that the final state parton shower plays a crucial role in the description of such observables. The decorrelated part of angular separations can be fully described, if the process $gg^*rightarrow gg$ is included.
We describe predictions for top-quark pair differential distributions at hadron colliders, which combine state-of-the-art NNLO QCD calculations and NLO electroweak corrections together with double resummation at NNLL$$ accuracy of threshold logarithms and small-mass logarithms. This is the first time that such a combination has appeared in the literature. Numerical results are presented for the invariant-mass distribution, the transverse-momentum distribution as well as rapidity distributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا