Do you want to publish a course? Click here

A Synthetic Version of Lies Second Theorem

64   0   0.0 ( 0 )
 Added by Matthew Burke
 Publication date 2016
  fields
and research's language is English
 Authors Matthew Burke




Ask ChatGPT about the research

We formulate and prove a twofold generalisation of Lies second theorem that integrates homomorphisms between formal group laws to homomorphisms between Lie groups. Firstly we generalise classical Lie theory by replacing groups with categories. Secondly we include categories whose underlying spaces are not smooth manifolds. The main intended application is when we replace the category of smooth manifolds with a well-adapted model of synthetic differential geometry. In addition we provide an axiomatic system that specifies the abstract structures that are required to prove Lies second theorem. As a part of this abstract structure we define the notion of enriched mono-coreflective subcategory which makes precise the notion of a subcategory of local models.



rate research

Read More

129 - Niles Johnson , Donald Yau 2019
We prove a bicategorical analogue of Quillens Theorem A. As an application, we deduce the well-known result that a pseudofunctor is a biequivalence if and only if it is essentially surjective on objects, essentially full on 1-cells, and fully faithful on 2-cells.
We provide an elementary proof of a bicategorical pasting theorem that does not rely on Powers 2-categorical pasting theorem, the bicategorical coherence theorem, or the local characterization of a biequivalence.
We propose foundations for a synthetic theory of $(infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe the internal categorical structures of arbitrary types. We define Segal types, in which binary composites exist uniquely up to homotopy; this automatically ensures composition is coherently associative and unital at all dimensions. We define Rezk types, in which the categorical isomorphisms are additionally equivalent to the type-theoretic identities - a local univalence condition. And we define covariant fibrations, which are type families varying functorially over a Segal type, and prove a dependent Yoneda lemma that can be viewed as a directed form of the usual elimination rule for identity types. We conclude by studying homotopically correct adjunctions between Segal types, and showing that for a functor between Rezk types to have an adjoint is a mere proposition. To make the bookkeeping in such proofs manageable, we use a three-layered type theory with shapes, whose contexts are extended by polytopes within directed cubes, which can be abstracted over using extension types that generalize the path-types of cubical type theory. In an appendix, we describe the motivating semantics in the Reedy model structure on bisimplicial sets, in which our Segal and Rezk types correspond to Segal spaces and complete Segal spaces.
We extend Homotopy Type Theory with a novel modality that is simultaneously a monad and a comonad. Because this modality induces a non-trivial endomap on every type, it requires a more intricate judgemental structure than previous modal extensions of Homotopy Type Theory. We use this theory to develop an synthetic approach to spectra, where spectra are represented by certain types, and constructions on them by type structure: maps of spectra by ordinary functions, loop spaces by the identity type, and so on. We augment the type theory with a pair of axioms, one which implies that the spectra are stable, and the other which relates synthetic spectra to the ordinary definition of spectra in type theory as $Omega$-spectra. Finally, we show that the type theory is sound and complete for an abstract categorical semantics, in terms of a category-with-families with a weak endomorphism whose functor on contexts is a bireflection, i.e. has a counit an a unit that are a section-retraction pair.
168 - Felix Joos , Jaehoon Kim 2019
For a collection $mathbf{G}={G_1,dots, G_s}$ of not necessarily distinct graphs on the same vertex set $V$, a graph $H$ with vertices in $V$ is a $mathbf{G}$-transversal if there exists a bijection $phi:E(H)rightarrow [s]$ such that $ein E(G_{phi(e)})$ for all $ein E(H)$. We prove that for $|V|=sgeq 3$ and $delta(G_i)geq s/2$ for each $iin [s]$, there exists a $mathbf{G}$-transversal that is a Hamilton cycle. This confirms a conjecture of Aharoni. We also prove an analogous result for perfect matchings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا