Do you want to publish a course? Click here

Synthetic Spectra via a Monadic and Comonadic Modality

90   0   0.0 ( 0 )
 Added by Mitchell Riley
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We extend Homotopy Type Theory with a novel modality that is simultaneously a monad and a comonad. Because this modality induces a non-trivial endomap on every type, it requires a more intricate judgemental structure than previous modal extensions of Homotopy Type Theory. We use this theory to develop an synthetic approach to spectra, where spectra are represented by certain types, and constructions on them by type structure: maps of spectra by ordinary functions, loop spaces by the identity type, and so on. We augment the type theory with a pair of axioms, one which implies that the spectra are stable, and the other which relates synthetic spectra to the ordinary definition of spectra in type theory as $Omega$-spectra. Finally, we show that the type theory is sound and complete for an abstract categorical semantics, in terms of a category-with-families with a weak endomorphism whose functor on contexts is a bireflection, i.e. has a counit an a unit that are a section-retraction pair.



rate research

Read More

141 - Michael Shulman 2015
We combine Homotopy Type Theory with axiomatic cohesion, expressing the latter internally with a version of adjoint logic in which the discretization and codiscretization modalities are characterized using a judgmental formalism of crisp variables. This yields type theories that we call spatial and cohesive, in which the types can be viewed as having independent topological and homotopical structure. These type theories can then be used to study formally the process by which topology gives rise to homotopy theory (the fundamental $infty$-groupoid or shape), disentangling the identifications of Homotopy Type Theory from the continuous paths of topology. In a further refinement called real-cohesion, the shape is determined by continuous maps from the real numbers, as in classical algebraic topology. This enables us to reproduce formally some of the classical applications of homotopy theory to topology. As an example, we prove Brouwers fixed-point theorem.
88 - Chuangjie Xu 2019
We introduce a syntactic translation of Goedels System T parametrized by a weak notion of a monad, and prove a corresponding fundamental theorem of logical relation. Our translation structurally corresponds to Gentzens negative translation of classical logic. By instantiating the monad and the logical relation, we reveal the well-known properties and structures of T-definable functionals including majorizability, continuity and bar recursion. Our development has been formalized in the Agda proof assistant.
We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures equivalent to a Datalog program, in terms of an existential pebble game. We also show that for every class C of finite structures that can be expressed in MSO and is closed under homomorphisms, and for all integers l,k, there exists a *canonical* Datalog program Pi of width (l,k), that is, a Datalog program of width (l,k) which is sound for C (i.e., Pi only derives the goal predicate on a finite structure A if A is in C) and with the property that Pi derives the goal predicate whenever *some* Datalog program of width (l,k) which is sound for C derives the goal predicate. The same characterisations also hold for Guarded Second-order Logic (GSO), which properly extends MSO. To prove our results, we show that every class C in GSO whose complement is closed under homomorphisms is a finite union of constraint satisfaction problems (CSPs) of countably categorical structures.
We give a new syntax independent definition of the notion of a generalized algebraic theory as an initial object in a category of categories with families (cwfs) with extra structure. To this end we define inductively how to build a valid signature $Sigma$ for a generalized algebraic theory and the associated category of cwfs with a $Sigma$-structure and cwf-morphisms that preserve this structure on the nose. Our definition refers to uniform families of contexts, types, and terms, a purely semantic notion. Furthermore, we show how to syntactically construct initial cwfs with $Sigma$-structures. This result can be viewed as a generalization of Birkhoffs completeness theorem for equational logic. It is obtained by extending Castellan, Clairambault, and Dybjers construction of an initial cwf. We provide examples of generalized algebraic theories for monoids, categories, categories with families, and categories with families with extra structure for some type formers of dependent type theory. The models of these are internal monoids, internal categories, and internal categories with families (with extra structure) in a category with families.
129 - Niles Johnson , Donald Yau 2019
We prove a bicategorical analogue of Quillens Theorem A. As an application, we deduce the well-known result that a pseudofunctor is a biequivalence if and only if it is essentially surjective on objects, essentially full on 1-cells, and fully faithful on 2-cells.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا