Do you want to publish a course? Click here

Towards information based spatiotemporal patterns as a foundation for agent representation in dynamical systems

49   0   0.0 ( 0 )
 Added by Martin Biehl
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We present some arguments why existing methods for representing agents fall short in applications crucial to artificial life. Using a thought experiment involving a fictitious dynamical systems model of the biosphere we argue that the metabolism, motility, and the concept of counterfactual variation should be compatible with any agent representation in dynamical systems. We then propose an information-theoretic notion of emph{integrated spatiotemporal patterns} which we believe can serve as the basic building block of an agent definition. We argue that these patterns are capable of solving the problems mentioned before. We also test this in some preliminary experiments.



rate research

Read More

This is a contribution to the formalization of the concept of agents in multivariate Markov chains. Agents are commonly defined as entities that act, perceive, and are goal-directed. In a multivariate Markov chain (e.g. a cellular automaton) the transition matrix completely determines the dynamics. This seems to contradict the possibility of acting entities within such a system. Here we present definitions of actions and perceptions within multivariate Markov chains based on entity-sets. Entity-sets represent a largely independent choice of a set of spatiotemporal patterns that are considered as all the entities within the Markov chain. For example, the entity-set can be chosen according to operational closure conditions or complete specific integration. Importantly, the perception-action loop also induces an entity-set and is a multivariate Markov chain. We then show that our definition of actions leads to non-heteronomy and that of perceptions specialize to the usual concept of perception in the perception-action loop.
We present a measure of local information transfer, derived from an existing averaged information-theoretical measure, namely transfer entropy. Local transfer entropy is used to produce profiles of the information transfer into each spatiotemporal point in a complex system. These spatiotemporal profiles are useful not only as an analytical tool, but also allow explicit investigation of different parameter settings and forms of the transfer entropy metric itself. As an example, local transfer entropy is applied to cellular automata, where it is demonstrated to be a novel method of filtering for coherent structure. More importantly, local transfer entropy provides the first quantitative evidence for the long-held conjecture that the emergent traveling coherent structures known as particles (both gliders and domain walls, which have analogues in many physical processes) are the dominant information transfer agents in cellular automata.
The aim of multi-agent reinforcement learning systems is to provide interacting agents with the ability to collaboratively learn and adapt to the behavior of other agents. In many real-world applications, the agents can only acquire a partial view of the world. However, in realistic settings, one or more agents that show arbitrarily faulty or malicious behavior may suffice to let the current coordination mechanisms fail. In this paper, we study a practical scenario considering the security issues in the presence of agents with arbitrarily faulty or malicious behavior. Under these circumstances, learning an optimal policy becomes particularly challenging, even in the unrealistic case that an agents policy can be made conditional upon all other agents observations. To overcome these difficulties, we present an Attention-based Fault-Tolerant (FT-Attn) algorithm which selects correct and relevant information for each agent at every time-step. The multi-head attention mechanism enables the agents to learn effective communication policies through experience concurrently to the action policies. Empirical results have shown that FT-Attn beats previous state-of-the-art methods in some complex environments and can adapt to various kinds of noisy environments without tuning the complexity of the algorithm. Furthermore, FT-Attn can effectively deal with the complex situation where an agent needs to reach multiple agents correct observation at the same time.
Recently, much attention has been paid to the societal impact of AI, especially concerns regarding its fairness. A growing body of research has identified unfair AI systems and proposed methods to debias them, yet many challenges remain. Representation learning for Heterogeneous Information Networks (HINs), a fundamental building block used in complex network mining, has socially consequential applications such as automated career counseling, but there have been few attempts to ensure that it will not encode or amplify harmful biases, e.g. sexism in the job market. To address this gap, in this paper we propose a comprehensive set of de-biasing methods for fair HINs representation learning, including sampling-based, projection-based, and graph neural networks (GNNs)-based techniques. We systematically study the behavior of these algorithms, especially their capability in balancing the trade-off between fairness and prediction accuracy. We evaluate the performance of the proposed methods in an automated career counseling application where we mitigate gender bias in career recommendation. Based on the evaluation results on two datasets, we identify the most effective fair HINs representation learning techniques under different conditions.
Conversational agents (CAs) represent an emerging research field in health information systems, where there are great potentials in empowering patients with timely information and natural language interfaces. Nevertheless, there have been limited attempts in establishing prescriptive knowledge on designing CAs in the healthcare domain in general, and diabetes care specifically. In this paper, we conducted a Design Science Research project and proposed three design principles for designing health-related CAs that embark on artificial intelligence (AI) to address the limitations of existing solutions. Further, we instantiated the proposed design and developed AMANDA - an AI-based multilingual CA in diabetes care with state-of-the-art technologies for natural-sounding localised accent. We employed mean opinion scores and system usability scale to evaluate AMANDAs speech quality and usability, respectively. This paper provides practitioners with a blueprint for designing CAs in diabetes care with concrete design guidelines that can be extended into other healthcare domains.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا